
Resource Allocation for Minimized Power
Consumption in Hardware Accelerated Clouds

Nazım Umut Ekici∗†, Klaus Werner Schmidt†, Alper Yazar∗†, Ece Güran Schmidt†

† Department of Electrical and Electronics Engineering, METU, Ankara, Turkey

{nazim.ekici, schmidt, alper.yazar, eguran}@metu.edu.tr
∗ Defence Systems Technologies, ASELSAN, Ankara, Turkey

{uekici, ayazar}@aselsan.com.tr

Abstract—In this paper we propose ACCLOUD-MAN, a novel
resource manager for heterogeneous cloud data centers. In
heterogeneous clouds a user request can be satisfied with more
than one physical resource alternative. That is, the resource
manager must decide which resource alternative will be chosen,
along with the decision of the server the request will be assigned
to. ACCLOUD-MAN’s resource management objective is to
reduce the power consumption of the cloud data center. To this
end, the manager is modeled as an integer linear programming
problem and is implemented in MATLAB, along with a cloud
data center simulation platform. Simulation results show that
the proposed ACCLOUD-MAN outperforms existing resource
allocation methods such as Openstack.

Index Terms—cloud computing, data center, hardware accel-
erator, resource management, green computing.

I. INTRODUCTION

Cloud computing systems use virtualization to serve re-

sources on physical machines to users in a dynamic manner.

In this respect, resource allocation methods aim to create a

configuration that will meet requests of the users according to

different performance goals and constraints with the existing

physical resources. Heterogeneous cloud architectures having

computational resources such as GPU (Graphics Processing

Unit), TPU (Tensor Processing Unit) as well as FPGA based

accelerators in addition to classical resources like CPU draw

attention from both academia and industry.

In heterogeneous clouds, resource allocation methods need

to cover new computation resources in addition to standard

existing resources such as CPU, memory, disk, bandwidth

(BW). Furthermore, a cloud resource manager assigns re-

sources for SaaS (Software as a Service) requests, depending

on the type of software the user requests. In heterogeneous

clouds a SaaS request can be satisfied by using standard CPUs

or alternatively by using other computing resources introduced

by the heterogeneous clouds. Each of these alternatives have

different performance constraints and resource usage costs.

Any resource allocation method should keep up with the

demand arrival rate without compromising an efficient solution

and adding too much latency.

In this paper, we propose and evaluate ACCLOUD-MAN

(ACcelerated CLOUD MANagement) as a novel resource

This work was supported by the Scientific and Research Council of Turkey
(TUBITAK) [Project Code 117E667-117E668].

manager including new computing resources introduced by

heterogeneous clouds. ACCLOUD-MAN simultaneously con-

siders alternative ways requests can be satisfied and allocates

resources optimally, by deciding on which type of computing

resource will be used and on which server it will run. In the

current development phase, ACCLOUD-MAN incorporates

FPGA-based hardware accelerators as a new type of com-

puting resource and performs resource allocation to minimize

power consumption within the scope of green computing.

II. CLOUD COMPUTING RESOURCE CATEGORIZATION

AND PREVIOUS WORKS

Cloud resources are served mainly as 3 different types

of services: Infrastructure (Infrastructure as a Service, IaaS),

Platform (Platform as a Service, PaaS) and Software (Software

as a Service, SaaS) [1]. IaaS users get dedicated virtual

machines (VMs) with allocated resources like CPU, memory,

disk, network and a running OS. For PaaS users, a cloud

provider serves a managed software development or deploy-

ment environment. Both IaaS and PaaS users explicitly state

the amount and types of resources they request. SaaS users are

not interested in software development. They just provide their

data, which is processed by software developed by the cloud

provider. SaaS users do not explicitly state the amount and

type of resources they require. The configuration satisfying

their request is decided by the cloud provider depending on

the type of software and size of submitted data.

Resource management studies in the literature aim to assign

a given request to different configurations in the best possible

way. [2] tries to minimize either energy consumption or

response time. In [3], a resource allocation method for a

cloud with different types of servers is based on fairness.

Resource management is an NP-hard problem [4], [5]. [6]

solves the multi-purpose optimization problem that is formu-

lated to predict and improve energy and resource usage in a

meta-heuristic manner using genetic algorithms. [7] proposes

a prediction-based and power-aware allocation algorithm that

includes energy consumption of network devices in the cloud

data centers.

To the best of our knowledge, there is no study covering

new resource types in heterogeneous clouds, as well as a

978-1-7281-1856-7/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

resource allocation method for SaaS, which evaluates alterna-

tive resource allocation schemes to meet user requests in pure

traditional computing resources or in different heterogeneous

configurations, including hardware accelerators.

III. FORMULATION OF ACCLOUD-MAN

This section formulates the proposed cloud computing

resource management framework ACCLOUD-MAN. Section

III-A explains the general setting and the objectives of the

ACCLOUD-MAN resource manager. Section III-B formu-

lates an integer linear program (ILP) in order to realize the

ACCLOUD-MAN resource manager.

A. Cloud Computing Resource Management

Cloud data centers (CDC) offer certain types of resources

to the user. In this work, we consider that 5 different resource

types are offered by physical machines (PM) in a CDC: CPU,

FPGA, Memory, Disk and network Bandwidth. However, the

proposed method is applicable for any type and number of

resources. In analogy to our previous work [8], we assume

that FPGAs are virtualized by partitioning them into smaller

reconfigurable regions. These regions are then served to the

user as standalone computing resources or as hardware accel-

erators with traditional CPUs.

Users can request resources from the CDC in two ways.

For IaaS/PaaS (IPaaS) requests in accordance with the service

models in Section II, the user explicitly specifies the amount of

requested resources for each resource type. For SaaS request,

the user only specifies the requested cloud application. The

amount of resources required for such SaaS request is then

determined by ACCLOUD-MAN, taking into account that

there may be more than one resource alternative to meet a SaaS

request. For example, one (or more) processor cores or one (or

more) FPGA regions can be assigned to run an application to

compress a 1 GB file.

The ACCLOUD-MAN resource manager has two compet-

ing objectives. On the one hand, it is desired to minimize

power consumption of the data center for the requested re-

sources. On the other hand, is is required to make the resource

allocation decision at a speed close to real time so as to

avoid interference with the operation of the cloud. Hereby,

it has to be considered that the power consumption increases

when new requests are assigned to currently running nodes.

If running servers do not have sufficient resources for new

requests, then offline servers must be powered up. When a

server is powered up, it consumes constant power even if it

isn’t used for computation.

Addressing the stated objectives is not a trivial task. For

example, the goal of low power consumption is generally not

achieved by selecting the PM with the least need for power. If

the PM with the lowest power consumption is off, assigning

a more power intensive alternative to a PM that is already

open may result in less total power consumption. For this

reason, the resource manager should decide not only which

PM will be assigned to each incoming request, but also which

alternative will be used. Hereby, ACCLOUD-MAN selects an

assignment among previously known resource alternatives for

SaaS requests. The difference observed by the user among

the alternatives is the time of completion of the work. It is

assumed that a preliminary study and profiles of different

types of inputs are available for SaaS software running in the

cloud and the alternatives are kept in a database by the service

provider according to these profiles.

B. Resource Allocation Model

This section formulates the stated ACCLOUD-MAN func-

tionality in the form of an ILP. Hereby, a set PM =
{PM1, . . . , PMN} of available PMs is assumed, whereby

each PM PMi ∈ PM offers CPU, FPGA, Memory, Disk,

and network Bandwidth resources defined by Ci, Fi, Mi,

Di, Bi, respectively. CPU and FPGA resources are measured

and offered to the user in terms of number of cores and

reconfigurable regions (module) respectively. Memory, disk

are in terms of GB and bandwidth is in terms of Mbps.

The main task of ACCLOUD-MAN is to assign user

requests to the PMs in PM. Since user requests arrive sporad-

ically, ACCLOUD-MAN collects a set of K pending requests

REQ = {REQ1, . . . ,REQK} within a pre-defined time

interval and then determines a suitable assignment of these

requests to PMs at the end of this time interval. We denote the

time instant when a decision is made as a decision instant of

ACCLOUD-MAN. This time interval should be chosen such

that it would accumulate enough user requests but should not

keep users waiting too much for their request to be evaluated.

Hereby, it is assumed that each request REQj can be served as

one of nj alternatives. That is, REQj = {reqj,1, . . . , reqj,nj
}

is a set of alternatives reqj,k and each alternative reqj,k
requires the physical resources cj,k (CPU), fj,k (FPGA), mj,k

(Memory), dj,k (Disk), bj,k (Bandwidth).

In order to formulate the desired minimization of the power

consumption, we introduce a model of the power consumption

of a CDC. Hereby, we take into account that the CDC is in

a well-defined state at each decision instant of ACCLOUD-

MAN. That is, a certain number of PMs is on, whereas the

remaining PMs are off. We introduce the parameter oni such

that oni = 1 if PMi is on and oni = 0 if PMi is off right

before the decision instant. In addition, we introduce a decision

variable qi for each PMi such that qi = 1 if PMi is on and

qi = 0 if PMi is off after the decision instant. We emphasize

that oni is a given parameter, whereas qi is a decision variable

to be computed by ACCLOUD-MAN.

The power consumed by each PM depends on the state

of the PM (on/off) and the used resources of the requests

served by the PM. Accordingly, we introduce Pon,i as the idle

power consumption of PMi. In addition, PCPU,i and PFPGA,i

indicate the power consumption of one CPU core and one

FPGA module of PMi, respectively.

Using the defined parameters and variables, it is now

possible to determine the additional power consumption when

allocating the pending requests in REQ to PMs in PM. The

additional power consumption consists of two components.

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

First, there is the power PnewPM of PMs that are newly switched

on. It evaluates to

PnewPM =

N∑

i=1

Pon,i · (1− oni) · qi. (1)

In (1), (1− oni) · qi evaluates to 1 if PMi was off before the

decision instant (1 − oni = 1) and is on after the decision

instant (qi = 1). Second, there is the power Pcomp, which is

the power used by the newly assigned CPU cores and FPGA

modules. In order to compute this power, we introduce the

decision variable si,j,k, which is 1 if alternative reqj,k of

request REQj is allocated to PMi and 0 otherwise. Then,

we obtain

Pcomp =
∑

ijn

(PCPU,icj,k + PFPGA,ifj,k) · si,j,k (2)

Together, we want to minimize the power consumption, which

amounts to

min F = PnewPM + Pcomp. (3)

While minimizing F in (3), various constraints on the

resources have to be respected. First, it must hold that each

PM has enough resources for the requests allocated to it. (4) to

(8) represent these constraints for the different resource types:

CPU, FPGA, Memory, Disk and Bandwidth.

K∑

j=1

nj∑

k=1

cj,ksi,j,k ≤Ci ∀i ∈ PM (4)

K∑

j=1

nj∑

k=1

fj,ksi,j,k ≤Fi ∀i ∈ PM (5)

K∑

j=1

nj∑

k=1

mj,ksi,j,k ≤Mi ∀i ∈ PM (6)

K∑

j=1

nj∑

k=1

dj,ksi,j,k ≤Di ∀i ∈ PM (7)

K∑

j=1

nj∑

k=1

bj,ksi,j,k ≤Bi ∀i ∈ PM (8)

In addition, it must hold that each alternative reqj,k of a

given request REQj is assigned to a unique PM. That is,

N∑

i=1

nj∑

k=1

si,j,k = 1 ∀REQj ∈ REQ. (9)

Finally, it must be the case that any PM that serves at least

one request is on. This is represented by

K∑

j=1

nj∑

k=1

si,j,k ≤ qi ·M1 ∀PMi ∈ PM. (10)

Here, M1 is a large integer value that is larger than the

maximum number of requests that can be handled by a single

PM.

Altogether, the resource allocation problem of ACCLOUD-

MAN is given by minimizing F in (3) subject to the con-

straints in (4) to (10). It is readily observed that this optimiza-

tion problem is an ILP. According to the described operation

of ACCLOUD-MAN, this optimization problem has to be

solved at each decision instant. The result is the information

about all PMs that need to be on (qi = 1), the selection of

resource alternatives reqj,k and their assignment to a PM PMi

if si,j,k = 1.

We denote the PM and alternative selected for a given

request REQj as pmj and altj , respectively. In order to

determine pmj and altj , the following equations can be used.

pmj =

N∑

i=1

nj∑

k=1

(si,j,n · i) ∀REQj ∈ REQ, (11)

altj =

N∑

i

nj∑

k=1

(si,j,n · k) ∀REQj ∈ REQ (12)

Remark 1: It has to be noted that the defined optimization

problem is suitable for all different types of services. In the

case of IPaaS requests, the physical resource requirement is

given by a single alternative. For SaaS requests, alternatives

are determined according to the above-mentioned alternative

database.

Remark 2: It also has to be emphasized that the formulated

optimization problem is general in the sense that new/different

resources can be added in a straightforward way. If a new

resource contributes to the power consumption, then an addi-

tional term needs to be included in (2). Moreover, an additional

resource constraint similar to (4) to (8) is needed.

C. Complexity and Simplification

In the above formulation, the cardinalities of the sets PM

and REQ is N and K, respectively. If there is only one

alternative per request, then the complexity of the resource

allocation problem is O(NK). Otherwise, the complexity is

O((NL)K) if the average number of alternatives per request

is L.

One way of reducing this computational complexity is to

divide the set of pending requests into smaller groups and

processing these groups sequentially. Assuming that requests

are divided into groups of M requests, there are K ′ = �K/M�
groups to be processed. We obtain (NL)M combinations for

each group and K ′ ·(NL)M combinations in total. In this way,

the new computational complexity will be O(K · (NL)M).
Because of the smaller exponent, better scalability is expected.

However, it is also expected that the decisions taken with

smaller groups of request will deviate from the optimal so-

lution.

Another way of reducing the computational complexity is to

reduce the number of PMs that are included in the optimization

problem. For example, assume that a number of K request has

to be allocated and a number of Non PMs is currently on. Then,

it is possible to include a reduced number of Non +γ ·K PMs

(instead of N PMs) in the optimization problem, leading to a

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

reduced computational complexity of O(((Non+γ ·K) ·L)M).
Hereby, γ is a coefficient that ensures solvability of the ILP.

Again, it is expected that the decisions taken with a smaller

number of PMs will slightly deviate from the optimal solution.

This idea is further explored in the next section.

IV. ACCLOUD-MAN EVALUATION

This section presents simulation results of a CDC that

implements the proposed ACCLOUD-MAN and a comparison

to the existing Openstack resource allocation.

A. Simulation Environment

ACCLOUD-MAN is implemented in MATLAB, together

with a simulation environment as shown in Figure 1. The

”Simulation Controller” simulates a CDC with physical

and software resource information from the ”Cloud Assets”

database. It sends request events from a ”Request Traces”

file to ACCLOUD-MAN via the ”Controller Interface” and

generates resource assignments according to incoming deci-

sions. The ”Simulation Settings” block adjusts the ”Simulation

Controller” on how to create groups of requests or smaller sets

of PMs. The ”Log” block collects the data of all simulations

and compares and reports the effectiveness of resource allo-

cation strategies. The ”Control Interface” communicates with

the ”Simulation Controller” via a TCP Socket and provides

an interface to the ”Allocation Strategist”. The ”Allocation

Strategist” block groups incoming requests and sends them to

the ”ILP Solver” block. The ”ILP Solver” block solves the

ILP defined in Section III-B and transmits the resulting re-

source allocation decisions for each request to the ”Allocation

Strategist”. The ”Allocation Strategist” collects the decisions

given for all request groups and sends them to the ”Controller

Interface” to be sent to the outside world. The current version

of the simulation environment is designed to also be able to

communicate with the OpenStack [9] software that is used in

real-world applications for cloud resource allocation.

B. Simulation Setup

In order to evaluate the performance of ACCLOUD-MAN,

we developed a simulation setup within the described environ-

ment. The task of the simulation setup is to

1) generate a CDC with a certain number of PMs with

different resources and power consumptions,

2) dynamically generate user requests for the CDC with

different resource types,

3) determine a resource allocation for pending requests,

4) update the state (resource utilization and power con-

sumption) of the CDC.

We next describe the realization of the stated task in detail.

Regarding 1), we define intervals for the possible values of

each resource type similar to the dataset in [10]. For each PM,

the values for Memory (Mi), Disk (Di) and Bandwidth (Bi)

are randomly selected from an normalized interval [80, 100],
whereby 100 represents the maximum possible resource. Like-

wise, the number of CPU cores (Ci) and the number of FPGAs

(Fi) is randomly chosen from the intervals [16, 32] and [4, 8],

Fig. 1. Software architecture of the resource manager.

respectively. Regarding the power consumption, a potentially

high power in the interval [900, 1100] is needed to turn on

a PM (Pon,i), whereas the power consumption for each CPU

(PCPU,i) and FPGA (PFPGA,i) are in the intervals [15, 25]
and [10, 20], respectively. In a CDC with N PMs, each PM is

randomly generated with values from the stated intervals.

Regarding 2), alternatives are generated for a number of K
requests in a given time interval T . The number of alternatives

for a request is chosen randomly from the interval [1,3]. In

agreement with Section III-B, the resource requirement (CPU,

FPGA, Memory, Disk, Bandwidth) of each request alternative

reqj,k has to be specified. To this end, we proceed in a

similar way as in item 1). The CPU requirement (cj,k) and

the FPGA requirement (fj,k) are selected randomly from the

intervals [0, 16] and [0, 4]. The remaining resources (Memory

– mj,k, Disk – dj,k, Bandwidth – bj,k) are selected from the

normalized interval [0, 20]. Hereby, it is respected that request

alternatives might not need a certain type of resource.

Regarding 3), we include different options in our simulation

environment for comparison. The first option corresponds to

a method that can be implemented with Openstack’s filter

and weight based resource management framework, which

takes individual requests and assigns them to the most power-

efficient available PM. Since Openstack does not consider

the case of different alternatives for the same request, the

alternative with the lowest power consumption is used. The

second option is a modification of the Openstack resource

management that was developed in the scope of our work.

In order to handle different request alternatives of a request

REQj , we perform the Openstack resource allocation for each

alternative reqj,k and select the most power-efficient assign-

ment. However, requests are still processed individually. As the

third option, we implemented the proposed ILP formulation

in Section III-B for a certain number K of requests and a

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

number γ · K of additional PMs that can be used for the

resource allocation. For the solution of the ILP, the CPLEX

solver is integrated in the simulation environment in Matlab

using Tomlab [11].

Regarding 4), we perform a simulation of the resource

utilization of a CDC in two main stages. The first stage

simulates a cold start and the second one simulates a steady

state of the CDC. In the first stage, we initialize the CDC such

that all PMs are turned off. Then, we periodically generate a

number of K requests and assign them to PMs according to

one of the methods in item 3). The first stage continues until

a certain state of the CDC is reached where most of the open

PMs are almost fully utilized for at least one resource. The

CDC state that is reached after the first stage can be considered

as the state of an operating CDC with a high utilization of

PMs. In the second stage, new requests are generated and

currently served (active) requests are terminated in the CDC.

K new requests are generated in a time interval T in the same

way as in the first stage. Active requests for termination are

randomly selected such that an average number of K requests

is removed from the CDC within the time interval T . The

second stage is run for a pre-defined amount of time in each

experiment. In all our experiments, we assume that the rate of

incoming requests is in the order of 1 request per 2.5 seconds

similar to [10].

In the sequel, we report on the results of various simula-

tion experiments that illustrate the benefits of the proposed

ACCLOUD-MAN.

C. Exp. 1: Comparison of Resource Allocation Methods

In this section, we use the simulation setup described in

Section IV-B to validate the functionality of ACCLOUD-MAN

(based on the ILP solution) in comparison to the resource

allocation of Openstack and the modified Openstack. To this

end, we run experiments with N = 400 PMs, a number of

K = 10 request that are served together and γ = 2. That is,

the ILP is formulated under the assumption that γ · K = 20
candidate PMs can be added to the currently on PMs. In our

experiments, the first stage of the simulation is completed after

about 45 min and the second stage covers about 3 hours.

Exemplary results are shown in Fig. 2 to 4. It is readily

observed from Fig. 2 and 3 that ACCLOUD-MAN achieves

the smallest number of used PMs and the least amount of con-

sumed power. The improvement compared to the Openstack

and modified Openstack (with alternatives) resource allocation

is in the order of 10% and 5%, respectively. It can further be

seen from Fig. 4 that the resource allocation computations can

be performed in a small amount of time even when solving

the ILP for ACCLOUD-MAN.

In addition, Fig. 5 shows the utilization of the CDC for the

different resources and resource allocation methods. The fact

that ACCLOUD-MAN uses the smallest number of PMs, is

consistent with the observation that the resource utilization of

ACCLOUD-MAN is the highest among the different methods.

It is further interesting to note that all the methods achieve a

high utilization of one dominating resource. In this experiment,

Fig. 2. Experiment 1: Number of PMs that are turned on over time.

Fig. 3. Experiment 1: Power consumption over time.

this observation is meaningful since, on average, an equal

number of requests with a similar distribution of resources

enter and leave the CDC.

D. Exp. 2: Dependency on the Number of Requests

One parameter that affects the computation time and perfor-

mance of ACCLOUD-MAN is the number of requests K in

one group. On the one hand, a larger value of K increases the

number of decision variables of the ILP in Section III-B and

hence leads to an increased computation time. On the other

hand, a smaller value of K is expected to have a negative effect

Fig. 4. Experiment 1: Run-time of the resource allocation computation.

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Experiment 1: Resource utilization of the different methods.

on the performance (number of PMs, power consumption,

resource utilization) of ACCLOUD-MAN. In order investigate

this effect, we perform the same simulation experiments as in

Section IV-C with different values of K = 5, K = 7 and

K = 10. Exemplary results are shown in Fig. 6 to 8.

Fig. 6. Experiment 2: Number of PMs that are turned on over time.

Fig. 7. Experiment 2: Power consumption over time.

The interesting observation from Fig. 6 and 7 is that the

performance for K = 7 is slightly better than that for K = 10.

Fig. 8. Experiment 2: Run-time of the resource allocation computation.

This indicates that it is actually not necessary to include a large

number of requests in one group in order to achieve a good

performance of ACCLOUD-MAN.

The solver’s computation time for different grouping sizes

is shown in Fig. 8. The computation time strongly depends

on the grouping size. For sizes of 5 and 7, it takes less than

0.1 s to compute an allocation. For a grouping size of 10, the

computation takes less than 0.2s for all but 5 cases. None of

these 5 exceptional cases exceed 0.4s. Comparing to the time

it takes to boot up a typical VM, the worst case of 0.4s is

small enough not to hinder the cloud’s operation.

E. Exp. 3: Dependency on the Size of the CDC

Another interesting parameter is the number of available

PMs in a CDC compared to the number of currently used PMs.

We next perform an experiment where about 300 PMs are in

use, whereas the number of PMs in the CDC is N = 400,

N = 1000 and N = 4000. Regarding the other parameters,

K = 10 and γ = 2 is used in this experiment. The simulation

results are shown in Fig. 9 to 11.

It can be seen from Fig. 9 that N has a small effect on the

number of PMs turned on. However, a considerable effect on

the power consumption is observed from Fig. 10. This result

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Experiment 3: Number of PMs that are turned on over time.

Fig. 10. Experiment 3: Power consumption over time.

can be explained as follows. In case of a small number of

available PMs (N = 400), the PMs to be chosen for resource

allocation might not fit perfectly for the incoming requests.

In case of a large number of available PMs (N = 1000 and

N = 4000), it is more likely to find PMs that fit the incoming

requests. That is, although a similar number of PMs is needed,

the PMs are more suitable for the incoming request if N is

larger, leading to a lower power consumption. There is no

notable difference in the computation times depending on N
as can be seen from Fig. 11.

Table I shows the average performance parameters for

Fig. 11. Experiment 3: Run-time of the resource allocation computation.

TABLE I
COMPARISON FOR DIFFERENT NUMBERS OF PMS.

on PM Power Time
mod. OS ILP mod. OS ILP mod. OS ILP

N = 400 1.05 1.0 1.12 1.08 0.65 1.06

N = 1000 1.04 0.99 1.06 1.03 3.14 1.03

N = 4000 1.05 1.0 1.03 1.0 15.84 1.0

Fig. 12. Experiment 4: Number of PMs that are turned on over time.

ACCLOUD-MAN and the modified Openstack resource al-

location. All the values are normalized with respect to the

value of the ILP solution for N = 4000. The values in

the table confirm that a larger number of PMs offers more

options for the resource allocation and hence leads to a better

performance for both the modified Openstack and ACCLOUD-

MAN. Hereby, it is interesting to note that the run-time of the

modified Openstack method increases considerably with the

larger number of PMs.

F. Experiment 4: Dependency on the Number of Candidate
PMs

We finally evaluate the dependency of ACCLOUD-MAN

performance on the parameter γ that determines the number

of additional PMs included in the ILP. We perform simulations

for N = 400, K = 10 and γ = 1, 1.5, 2, 2, 2.5. The simulation

results are shown in Fig. 12 to 14.

Fig. 13. Experiment 4: Power consumption over time.

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 14. Experiment 4: Run-time of the resource allocation computation.

TABLE II
COMPARISON FOR DIFFERENT VALUES OF γ .

γ = 1 γ = 1.5 γ = 2 γ = 2.5 γ = 3

on PM 1.02 1.02 1.01 1.01 1.0

Power 1.01 1.01 1.0 1.01 1.0

Time 0.64 0.73 0.81 0.90 1.0

The interesting observation in this case is that the difference

between the choices of γ is small. That is, offering a small

number of additional power efficient PMs for solving the

formulated ILP is sufficient to achieve a good performance

of ACCLOUD-MAN. This result is confirmed by the values

in Table II. Note that the values are normalized with respect

to the last column.

V. CONCLUSIONS

Cloud data centers use the concept of virtualization in

order to provide resources on physical machines to users. In

order to meet diverse user requests, available resources need

to be allocated efficiently. This paper proposes a new cloud

computing resource allocation model for heterogeneous cloud

architectures with differenent computational resources and a

corresponding resource manager ACCLOUD-MAN (ACceler-

ated CLOUD MANagement). The resource allocation model

includes IaaS and PaaS request as well as SaaS business

requests that can be met with multiple physical resource

alternatives. The objective of the ACCLOUD-MAN resource

manager is to assign the IaaS/PaaS/SaaS request to physical

machines (servers) with a minimum power consumption. The

resource allocation problem is formulated as an integer linear

programming (ILP) problem and solved using the CPLEX

solver.

In order to evaluate the performance of ACCLOUD-MAN,

the paper develops a simulation environment and performs sev-

eral simulation experiments. As the main result, it is observed

that ACCLOUD-MAN outperforms existing resource alloca-

tion methods such as Openstack. The experiments further show

that a good performance of ACCLOUD-MAN can be achieved

for reduced versions of the formulated ILP that can be solved

in less than 1 second. In future work, ACCLOUD-MAN will

be implemented and tested in a laboratory scale cloud data

center.

ACKNOWLEDGMENTS

The authors would like to thank TUBITAK and ASELSAN

for their support.

REFERENCES

[1] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC, Aug 2009, pp. 44–51.

[2] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
load distribution for multiple heterogeneous multicore server processors
across clouds and data centers,” IEEE Transactions on Computers,
vol. 63, no. 1, pp. 45–58, Jan 2014.

[3] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in
heterogeneous cloud computing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 10, pp. 2822–2835, Oct 2015.

[4] A. Yousafzai, A. Gani, R. M. Noor, M. Sookhak, H. Talebian, M. Shiraz,
and M. K. Khan, “Cloud resource allocation schemes: review, taxonomy,
and opportunities,” Knowledge and Information Systems, vol. 50, no. 2,
pp. 347–381, Feb 2017.

[5] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016.

[6] F. Tseng, X. Wang, L. Chou, H. Chao, and V. C. M. Leung, “Dynamic
resource prediction and allocation for cloud data center using the
multiobjective genetic algorithm,” IEEE Systems Journal, vol. 12, no. 2,
pp. 1688–1699, June 2018.

[7] M. Tarahomi and M. Izadi, “A prediction-based and power-aware
virtual machine allocation algorithm in three-tier cloud data cen-
ters,” International Journal of Communication Systems, vol. 32,
no. 3, p. e3870, 2019, e3870 IJCS-18-0389.R1. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3870

[8] A. Yazar, A. Erol, and E. G. Schmidt, “Accloud (accelerated cloud):
A novel fpga-accelerated cloud archictecture,” in 2018 26th Signal
Processing and Communications Applications Conference (SIU). IEEE,
2018, pp. 1–4.

[9] “Open Source Software For Creating Private and Public Clouds,”
https://www.openstack.org/.

[10] “Microsoft Azure What is Azure,” https://azure.microsoft.com/en-
us/overview/.

[11] “TOMLAB Optimization,” https://tomopt.com/tomlab/.

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:41 UTC from IEEE Xplore. Restrictions apply.

