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Part 1. 18/02/14 Lecture Note
1. INTRODUCTION

Sensor is a device that measures a physical quantity and converts it into a signal.

Physical aspects that sensors measures are light, motion, temperature, electro-
magnetic field, vibration, sound, gravity, etc.

Major sensor types are:

e Electromagnetic Sensor: Antenna
Acoustic Sensor: Microphone
Ultrasound Sensor: Sonobouy *
Light Sensor: Camera, Photodiode

Sensor Array is a set of sensors placed in a certain array geometry to gather
information in such a way that a single sensor con not.

Signal
Z " Sensor /

Array
Processor

-
y + Noise (Not necessarily
have direction)

X TN

Interference

FIGURE 1.1. A Typical Array with a Single Signal and Interference Source

As a footnote, distances greater than 10\ is a good assumption for far field.

Array Aperture is the space occupied by the array.

Generally speaking, as aperture size increases resolution increases. However, as
intersensor (?) distance, d, exceeds A/2 there is a spatial aliasing.

2. ARRAY AND SIGNAL CATEGORIES

Arrays and array problems can be classified according to different parameters.

(1) Array Geometry
(a) Linear (1D) Array
(b) Planar (2D) Array
(¢) Volumetric (3D) Array
When array geometry is fixed there is a Cramer-Rao Bound related with
geometry.
(2) Sensor Placement
(a) Uniform Spacing: Most robust placement

Thttp://en.wikipedia.org/wiki/Sonobuoy



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES

.-"/r H-\ ./r H‘\\ f/ i " _/"—_"“‘ \\
[ 1I'll |' \I I-' A Il'f
f .|. ! \ 1 ]
. J \ / W J \ J
Ny _J-"/ \"»__ - S \\._ e

3d

FIGURE 1.2. Sensors Separated By d, Array Aperture is 3d

(b) Non-Uniform Spacing: Good to increase aperture size but spatial alias-
ing problem may occur.

(¢) Random Spacing: Throw very cheap array from plane for example.
(3) Temporal Characteristics (Related with Time) of Signal
(a) Known Signal: Ex: Emergency Beacon Signal
(b) Signals with Unknown Parameters
(c) Signals with Known Structure: Ex: QPSK
(d) Random Signal: Most of time it is.
(4) Spatial Characteristics (Related with Space) of Signal
(a) Plane Wave Signals From Known Directions

(b) Plane Wave Signals From Unknown Directions
(c¢) Spatially Spread Signals

Near Field

Far Field

FIGURE 2.1. Near and Far Field Sources

As shown in Figure 2.1 sources can be classified into two main categories: Near
and Far field sources. In near field case, time delay isn’t a linear function. But from
observed data it is possible to find both distance and angle information. There are
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devices that use that technique. In far field case, we assume that source is far away
enough to consider waves as plane waves. There is an additional distance between
two sensors D. And time delay is simply 7 = D/c. However, it is only possible to
find DOA in that case. If source distance is greater than 10\ it can be assumed as
far field source.

Similarly for interference we have the same spatial and temporal characteristics.

3. OBJECTIVES OF ARRAY PROCESSING

(1) Passive Arrays
(a) Detect
(b) Estimate

(¢) Localize

(d) Track

(2) Active Arrays (Transmit a Signal First)

(a) Detect

(b) Estimate

(¢) Localize

(d) Track

e Detect the presence of a signal in the presence of noise and interference.

e Demodulate the signal and estimate the information from waveform in the
presence of noise and interference.

e A binary communication signal arrives over multipath, detect the informa-
tion sequence.

e Estimate the direction of arrival (DOA) of multiple plane wave signals in
the presence of noise.

e Construct the temporal and spatial spectrum estimate of the incoming sig-
nal and noise field. (Spatial t-F Spectrum (7))

e Direct the transmitted signal to a specific spatial location.

e Find the location of the source signal (Localization)

Some applications:

e Radar

Sonar

Communications

Acoustics

Radio Astronomy

Medical Diagnosis and Treatment

Array geometry establishes constraints on the array performance. Therefore it
should be selected appropriately.

By designing complex weights for the sensor outputs, one can filter the signal
such that signal coming from a particular angle is enhanced. (Beamforming)

4. ARRAY MODEL

0 and ¢ is defined as Flevation Angle and Azimuth Angle respectively as shown
in Figure 4.1.

(4.1) 0=(¢,0) Direction of Arrival (DOA) Angle

Relation between Cartesian and spherical coordinates is given in (4.2).
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Broadside

......... y

End-Fire

FIGURE 4.1. Spherical Coordinate System

r = rcospsind
(4.2) y = rsingsind
z= rcosf

The direction of plane wave propagation in unit direction ¢ is given as

cospsinf
(4.3) g = |singsind

cost

The signal arrives to each sensor with a time delay 7,,

_ 7gTPn
c

(4.4) Tn

where c is the velocity of the propagation, P, is the position vector for nt" sensor.

T,
(4'5) P7L é yn
Zn
Combining (4.4) and (4.5).
1
(4.6) Tp = —— [Pencos¢sint + Py, singcost + P, cosb)]
c

Let the frequency of the narrow band signal be w = 27 f rad/s. (Why narrowband
?77) In that case,
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w 27
(4.7 WTy = —EgTPn = —27F£9Tpn = —TQTPn
where A = ¢/f m.
Also wave number, k, is defined as
o cos¢psint
(4.8) k= I singsing

cosbf

5. ARRAY STEERING VECTOR (ARRAY MANIFOLD)

efjWTO
efjw'rl

e JwT2

(5.1) a(w,d,0) =

—JjwTam—1
€ Maz1

Combining (4.7), (4.8) and (5.1),

eIk Po
eIk P1
eikT P2

(5.2) a(w, ¢, 0) =

eIk Prr—y
Similarly, combining (4.5), (4.8) and (5.2)

ej 277' [Pzocos¢psind+Pyosingsind+P.ocosb)]
eJ 2% [Py cospsind+ Py singsinf-+P.y cosd]
el 2% [Procosdsind+ Py singsinf-+P.acos6]

(5.3) a(w, ¢,0) =
ej 277' [Pza—1cospsind—+Pyns—1singsind+P; pr—1cosb]

Note that array steering vector depends on frequency (equally A). We will drop
w but it is always there, not forget!

Only DOA information in a vector, but location information isn’t available (r is
missing.). It seems that with a single array you can’t find location. Well, how radar
find? It is a single sensor. This is for passive scenario, but radar is an active device.
Find time between transmission and reception. Radar is transmitting directional
pulse.

Array steering vector incorporates all the spatial characteristics of array.

When there are multiple plane wave sources at directions (¢1, 1) and (¢2, 602)
Array Steering Matriz A($,0) can be constructed from steering vectors.

2As mentioned, we drop w here but it is there.
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(5.4) A(9,0) = [a(¢1,01) a(g2,6)]
Notice that we are talking about co-channel signals. They occupy same band
but they are at different locations.

6. NARROW BAND ASSUMPTION

(6.1) BxTyax <<1

where B is the bandwidth of the signal in Hz. And Tj;4x is the maximum time
to travel across the array. *
Given the above assumption array output in time can be written as

(62) y(t)M:cl = A((ybv G)MTns(t)nrl + e(t)JVIrl

where e(t) is noise, s(t) is source signal and A(¢, ) is array steering matrix. N
is the number of snapshots (observation). n is the number of sources.

Alsot =kT and k =1,2... N. T should be selected using Nyquist rate.

We know that ¢ is used for continuous time signals. But we also use (6.2) in
discrete time. If we place kT, it is discrete time. But we are going to keep ¢ as it is
but we think in discrete time. Abuse of notation! We take t = 1,2... N. Because
it is derived when everything is in analog. Wehen digital domain is used, ¢t was
thought as discrete time, who cares? In that case, dimension of matrices at (6.2)
will change related with N. (Not sure?) Given dimensions are for analog case.

7. QUESTIONS

e For which equations narrow band signal is assumed?

8. CHECK

e Matrix sizes in (6.2). Especially N or n.

3Proof is later.



12 ALPER YAZAR

Part 2. 25/02/14 Lecture Note
9. ARRAY FACTOR

Array factor is a function of antenna (sensor) positions and weights used for
each antenna signal. In array factor definition we assume that each sensor has
same beam shape and doesn’t affect array factor. It doesn’t depend on individual
sensor characteristics. Elements are omni-directional.

FIGURE 9.1. Sensor Weighting

S

—1
(9.1) Bar(w,¢,0) £ wa(w,¢,0) = 3 wie"' B
J

Il
o

where w is weight vector. Elements are complex numbers. Because the signals
have assumed to be demodulated and they are in baseband. To have directional
characteristics you should play with phase. If you use phase and amplitude you can
control beam better. Only amplitude isn’t sufficient.

wo
w1

A
= w2

(9.2) w
WM-1] prq1

For a uniform linear array (ULA) with uniform weighting. In other words w; =
1/M where j = 0,1,... M — 1. To look at broadside direction (forward direction)
just sum up all sensor without no phase shift.




METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 13

Notice that in (9.3), ¢ = 0 for broadside direction. It is taken from Van Trees
book. But, we take ¢ = 90 for broadside direction. One may change cos¢ with
sin¢ our convention.

Also notice that you can’t differentiate elevation angle. No 6 in (9.3).

Plot of (9.3) is given in Figure 9.2. Code is given in the Appendix section.

Buwyp is the power beam width. It is found using 3dB bandwidth. That is where
Bar(¢) drops to 1/1/2.

Similarly, Bwyy is the null to null beam width. Also, Bwyy ~ 2Bwyp.

Nulls are at A/Md,2A/Md, . ... They are symmetric around y-axis.

Bapl¢) for ULA where M =100 A=2d=01
1 T T T T T T T

IBEE N

cosd
FIGURE 9.2. Array Factor for ULA with Uniform Weighting

10. ARRAY FACTOR PARAMETERS

(1) 3dB beamwidth (Bwgp)

(2) Null to null beamwidth (Bwyy)

(3) Distance to first sidelobe

(4) Height of the first sidelobe (Sidelobe level)

(5) Location of remaining nulls

(6) Rate of decrease of sidelobe

(7) Grating lobes. Grating lobes are very close to mainlobe in terms of ampli-
tude. One reason is spatial aliasing. Violation of A/2 rule.

Polar plot of Figure 9.2 is given in Figure 10.1. Code is given in the Appendix
section.

As a note, narrowest beamwidth is obtained when w; = 1/M but in that case
sidelobe level is largest (~ 13dB). Decreasing sidelobe level increases beamwidth
generally, filter design story...

Also notice that narrowest beamwidth is obtained at broadside direction (except
for circular arrays maybe). If you turn your ULA to another direction electronically,
beamwidth will increase.
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Bap(¢) for ULA where M =100 A=2 d=01
90

1

¢)

"=, 180

270

F1GURrE 10.1. Polar Array Factor for ULA with Uniform Weighting

Bwpy /2 provides a measure of the ability of the array to resolve two plane waves
signals. This is referred to Rayleigh Resoluiton limit. Two plane wave signals are
considered resolvable if the peak of the second beam pattern lies at/or outside the
null of the first beam patters. (Separation > Bwyy/2).

Methods which can resolve sources closer that Bwy /2 which beyond Rayleigh
resolution limit are called super resolution methods.*.

Also, CRB is the ultimate limit for unbiased estimators. The connection between
Rayleigh limit and CRB is done in D.N. Swingler, 1994.

The possible resolution of super resolution algorithms is approximately 1/10 of
the array bandwidth under the ideal conditions.

Note that resolution is related with two signal sources overlapping in time and
frequency (same signal). If there are two signals with different frequencies for
example, they are already separable no need for resolution in spatial domain.

11. APPROXIMATE FORMULAS FOR BEAMWIDTH

M element planar array with element positions given as follows:

Yy

Array center is the origin and following relation is valid.

(11.1) P, = [X’f} k=1,2....M

M
(112) S P=0
k=1
Equation (11.2) says that elements are symmetric with respect to origin.

4Chadwick, 2007
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mSE
N cRB

- Suferresolut-19n

SSVR

Ficure 10.2. CRB and Superresolution Techniques

The array half power beamwidth for an elevation angle 6§ = 90° is given as in
(11.3).

Al
11. B ~ 1.15V2———
( 3) wygp 5\[27T D(¢)
where
| M
(11.4) D) || 1> & (0)
k=1
where
(11.5) dk(¢) £ wrcos + ypsing
For ULA, Equation (11.3) reduces to
(11.6) Bupp~
' AP = (M = 1)d|sing|

Also as shown in Figure 11.1, narrowest beamwidth is obtained when ¢ = 90°.

12. (BEAM) ARRAY PATTERN

Array output depends on the DOA of the incident plane wave hence array acts
as a spatial filter. Array output is proportional to Array Pattern for a spatial
direction. You can filter two sources in spatial domain even if they have same
signals in time and frequency domain. Also it is possible to increase SNR with
sensor arrays.
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FIGURE 11.1. Narrowest Beamwidth at Broadside

(121)  Bap(w,6,0) = Ro(¢,0)wie?™ ™ + ..+ Ras_1(¢,0)wiy_q e/t P

where Rj(#,0) is element pattern for j* sensor.

Also similar to array factor equations, w in Equation (12.1) may drop in future,
but it is there.

If we assume identical element patterns as follows:

(12.2) Ro(¢,0) = Rar—1(9,0)
then,
(12.3) Bap(¢,0) = Ro(¢,0) x Bar(¢,0)

Array Pattern = Element Pattern x Array Factor

Uﬂp!}\q—eemf—ﬂ‘l_

[+Cl-fsn ¥ help
Sv n\\f_k +0<P=|'HP- N

VAR RN g

% ﬂf‘ﬂ:\‘] For;}-of‘

Ficure 12.1. Effect of Element Pattern on Array Pattern
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13. ARRAY PERFORMANCE MEASURES

(1) Directivity

(2) Array gain versus spatially white noise (Each element pick-ups uncorrelated
white noise)(Kind of SNR)

(3) Sensitivity

13.1. Directivity. Directivity of an ULA with d = \/2 (inter-sensor distance) is
given as follows:

1 1
(13.1) D= —/— = —
ijo lw; 2 whw

where w is Mx1 weight vector. Also notice that uniform weighting maximizes the
directivity (also Bwgp) of ULA at expense of increased sidelobe level. (w; = 1/M
then D = M)

For general case, directivity is proportional with number of sensors.

13.2. Array Gain. Array processing improves the SNR by adding signals coher-
ently and noise incoherently. The improvement is measured by array gain. Let the
sensor output be for single source case:

(13.2) Ymz1(t) = anz1(9,0)s1201(t) + ez (t)
Input SNR (at the sensor input)

(133) SNRinput = 2

2
s
ol
After beamforming:

(13.4) z(t) = why(t) = whas(t) + we(t)

For radar case w = a is the optimum weight vector.
If wfa =1, then

(13.5) SNRpput =
Array Gain is defined as

_ SNRoutput _ 1
~ SNR; oS
input Zj:O |w] |

(13.6) Ay

In specific case, A,, = M. In general A,, < M.
Observations:
(1) Array gain under spatially white noise is valid for arbitrary arrays as long
as |wfal? = 1.
(2) For ULA with d = \/2 white noise array gain is identical to array directivity.
(3) For ULA with d # \/2, D # Aw.
(4) Aw is maximum for uncorrelated noise when uniform weighting is used
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13.3. Sensitivity (Robustness). Sensitivity to gain, phase and imprecise posi-
tioning of the sensors is important. For small variances and arbitrary array geom-
etry.

(13.7) TSE = A}

For ULA with uniform weighting TSE = 1/M.

14. NARROWBAND MODEL

We consider the problem of locating and radiating sources by using an array of
M passive sensors. Source signals are sampled both in space and time by the sensor
array.

Assumptions:

(1) The sources are assumed to be situated in the far field of the array.

2D?
(14.1) distance > ~

where D is the array aperture. This is limit distance but 10\ is safer
distance.

(2) Both sensors and sources are in the same plane.

(3) Sources are point emitters.

(4) Propagation medium is homogeneous. If medium is dispersive it is not true

case. For example, sound waves in sea water.

(5) The number of sources, n, is assumed to be known. Otherwise it should be
estimated.

(6) Array is calibrated. In other words, sensors can be assumed to be LTI
systems. Their locations are known.

Let 7, denotes the time that wave travels from reference point to sensor k. Sensor
output is

(14.2) Ur(t) = hi(t) * o(t — 71,) + ex(t)

where hy(t) (impulse response of sensor) is known and x(t — 74), 7 and é(t)
are unknown.
Write Equation (14.2) in Fourier domain using CTFT.

(14.3) Vi(w) = Hiy(w) X (w)e 7™ + By (w)

Notice that Equation (14.3) or (14.2) (?7?) shows wideband model. It is a model
which shows time information. Narrow band model doesn’t show time information,
it shows phase information. But phase information is ambiguous (27 periodicity).
Time is unambiguous information. If you find time, you can find both angle and
distance to the transmitter. In narrowband, you can estimate phase.

x(t) is bandpass signal shown in Figure 14.1.

s(t) is baseband signal shown in Figure 14.2.
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FiGURE 14.1. Bandpass Spectrum

Z

S(u“
\ BaSel:ﬂr\J
Q Pgd—f\lm
SW

FIGURE 14.2. Baseband Spectrum

15. MODULATION

19

Let us assume that the information signal is divided into two parts: s7(t), sq(¢);

in phase and quadrature part respectively.

(15.1) s(t) = s1(t) + jsq(t)
s(t) is complex signal.
Also note the following relation.

(15.2) s(t)eret <L G — w,)
Modulation is take signal and multiplies it with a complex exponential.
16. QUESTIONS

e Why bars in Equation (14.2)?
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Part 3. 04/03/14 Lecture Note
17. MODULATION
FIGURE HERE? FIGURE HERE?

Let,
(17.1) z(t) & 2Re{s(t)e?'}
(17.9) 2{t) = s(t)eiet + 5* (t)e It

Taking CTFT of Equation (17.2).

(17.3) X(w)=5w—w:)+ S (—(w+w.))
Using (15.1)

(17.4) z(t) = 2[ss(t)cosw .t — sq(t)sinw.t]

_ 92 2 (4\11/2 _15q(t)
(17.5) x(t) = 2[s7(t) + s5(1)] 12cos (wct + tan ;j(t) )
(17.6) x(t) = a(t)cos(wet + ¢(t))

18. DEMODULATION

Let’s demodulate z(t),

(18.1) x(t)e Iwet
Taking CTFT,

(18.2) X(w) = 8S(w) + S*(—w — 2w,)
Now put Equation (17.3) in Equation (14.3).

(18.3) Yi(w) = Hy(w) [S(w — we) + S*(—w — we)] e 9™ + Ej(w)

In time domain, demodulated signal is

(18.4) Ji(t) = gr(t)e I

Again in frequency domain,

(18.5)  Yi(w) = Hy(w 4 we) [S(w) + §*(—w — 2w,)] e d(wtwe)m 4 Ep(w+ w,)
After the low-pass filtering

(18.6) Yi(w) = Hi(w + we)S(w)e 7@ Hwe)™ L By (w+ w,)
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19. NARROW BAND MODEL

Now assume that the received signal is narrow band. Then |S(w)| decreases
rapidly with w. Mathematically, BATmax < 1.

Under that assumption, it means that impulse response only affect at carrier
frequency.

(19.1) Vi(w) = Hy(we)S(w)e ™ + B (w + we)

Note that delay term is constant, not depends on signal.
Remark: If the signal is broadband but we use narrow band filters, we obtain
(19.1) if

e Sensor (filter) frequency response if flat over the passband. Hy(w + w.) =
Hk (wc).
e Signal spectrum varies over passband.

(19.1) in time domain can be written as:

(19.2) yr(t) = Hi(we)s(t)e 39 + ex(t)

Also t = pT is possible in (19.2) where p=1,... N.

Now let’s assume that sensors are identical, i.e., Hj(w.) = Hk(w,).
In case of ULA, normalizing with respect to first sensor signal
FIGURE HERE

(193 a(g) =
e_jW(;Tj\l—l

where M is the number of sensors.
Then, assuming single source

(19.4) Y(t) a1 = a(@) m215(t) 121 + e(t) a1

In general, assume that n signal source, then

(195) y(t)Mxl = A(¢)Mxn5(t)nx1 + 6(t)Marrl

where A(9) = [a(¢1) a(ds) ... a(én)]

Is it feasible to find 5 parameters from single observation, generally not! Gener-
ally, more observation is required.

For subspace techniques we are going to use covariance matrices. In general you
should at least M observations for M sensors.

10:40
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(19.6)
6.327r/)\dcos¢1 e_-]27T/)\dCOS¢2 o S0 (t) e (t)
y(t) _ ej27r/)\2dcosd>1 6]2#//\2dcos¢2 L S5 (t) n es (t)

ejQﬂ/)\(M—l)dcosri)l ej27r/A(M—1)dcos¢>2 . Sn(t) ol en(t) Ml

where t = 1,2,... N and N is the number of observations.

Equation (19.6) is given for ULA with M sensors, n sources. Note that, in
that equation steering vector has Vandermonde structure. This special for ULA.
This is useful if we have coherent sources. In that case, covariance matrix is rank
deficient. This is one of the major problems in array processing. ULA is the only
(?) geometry for perfect solution of coherent signals due to Vandermonde structure.
You can apply forward-backward spatial smoothing.

Problem is the given N observations of the array output, find ¢; and s;(t) where
1=1,2,...n.

‘L\¢ ™ 9 o L] é —>
e k=\ k:O

Ficure 19.1. ULA Delay Relation
As mentioned,

g7 P, dcos¢

(19.7) ro=—2 0 (. 1)
Then,

(198) fl(¢) — [1 ejwcdcos¢/c ejQdecosgb/c “}T
where w, = 27 f. and A = ¢/ fe.
Then,

(199) a(¢) — [1 ej27r/)\dcos¢ ej27r/)\2dcos¢o ) .]T

(19.10) a(g) = [1 e e 1T (277)

where w,, is spatial frequency.
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20. SAMPLING

20.1. Sampling in Time. Nyquist Theorem holds. fs; > 2f.. (Assume narrow-
band, largest frequency is f.)

20.2. Sampling in Spatial Domain. In (19.10), a(¢) is uniquely specified if and
only if |w,| < m. Any succeeding sensor phase difference should be less than =.
Then |f,| < 1/2,

(20.1) d|cosp| < A/2

(20.1) holds for any ¢ if d < A/2. This is the condition for no spatial aliasing
(Spatial Nyquist Theorem).

RinSE Noise-Free
N Noisy

O D2 P

F1GURE 20.1. Angle Aliasing Under Noise-Free and Noisy Cases

Finding the aliased angles (20.2),

(202) 6j27r/)\dcos¢1 _ ej27r/)\d(cos¢2+/\/dr

where 7 is an integer.

As an example, cosg = cospa + \/dr. Let take A =d, r = 1.

cospy — cospy = 1, then (¢1 = 0°,¢2 = 90°), (¢1 = 90°,¢2 = 180°). Several
angles could also be found taking —2 < r < 2. Asyou can see d = \ is a problematic
choice.

In theory, knowing exactly aliased angle pairs may be sufficient to eliminate
problem. However, in practice, noisy environment case there will be a continuous
range of aliasing angles instead of finite angle values due to noise etc. as shown in
Figure 20.1.

21. SPACES OF MATRIX, A

21.1. Null Space, N(A). is the space spanned by = which satisfies Az = 0. De-
noted by N(A). Let A be matrix represented by SVD.

X 0 H
(211) AM><N = [ul UQ] |: :| [Zz_]:| :ulEvf
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where size of uy is v, uy is M —r, vl is r and v4 is N —r.
Then

(21.2) Dim of N(A) = N — # of singular values different than 0

The basis vectors of N(A) are the eigenvectors in V' that corresponds to zero
singular values. Then v is the orthonormal basis for N(A). N(A) = span(vs).

21.2. Row Space, R(AM). is spanned by the singular vectors in V with singular
values different than zero. Then v; is the orthonormal basis for R(AT). R(Af) =
span(vy). This is space spanned by rows of A.

Note that v; and ve are orthonormal (null space and row space is orthonormal).

21.3. Column (Range) Space, R(A). is the subspace spanned by the columns
of A. Then w; is the orthonormal basis for R(A). R(A) = span(uy).

21.4. Left-Null Space, N(Af). uy is the orthonormal basis for N(Af). N(AH)
= span(us).

The subspaces R(A) and N(AH) are orthogonal and they span C™. The sub-
spaces R(AM) and N(A) are orthogonal and they span CV.

If R = AAH | then it is positive semi-definite M x M. Its eigenvectors are
orthogonal.

B ool [off
(21.3) Ryrsn = [ur us] [ 0 0] [vf}

In that case, range space of R is equivalent to signal space of R which is spanned
by vectors ui. Similarly, null space of R is equivalent to noise space of R which
is spanned by vectors us. Also these two spaces are orthogonal to each other
(previously not for arbitrary rectangular matrix.). Also, uffuy = 0.

11:40

22. PROJECTION MATRICES

Theorem 1

Let {ay,as,...,a,} be any basis for subspace W of CM. Form M x n matrix.
(22.1) A= [al as ... an]

The projection matrix for W is A(A7A)~1AH = p.

Theorem 2

Let {u1,us,...,u,} be a unitary basis for subspace W of C™. Form the matrix
U= [ul Uy ... un} Then UUH = P is the orthogonal (7??) projection matrix
for the W.

Both theorem 1 and 2 projects onto signal space.
Any projection matrix satisfies:

e P2 = P, Idempotent

e P is symmetric

e Kigenvalues of P is 0 or 1.
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(22.2) R = E{y(tyy()"} = AB{s(t)s()" } A" + E{e(t)e(t)"}

Note that in (22.2), noise and signal is assumed to be uncorrelated.

(22.3) R = ARA" + 5?1 =UAU"
where
A0 0
0 A 0
(22.4) A= . :
0 0 A
Also white noise is assumed at (22.3).
Also
(22.5) R=UAU! +UAU"

where U, corresponds to signal space eigenvectors and U;A,UH is signal space.
Columns of U spans R(A). Similarly, U, corresponds to noise space eigenvectors
and U, A UH is noise space. Columns of U, spans N(AH).

Now let’s define,

(22.6) & U Ul = A(AH A~ AT

Note that (22.6) is a projection matrix onto signal space. Also,

(22.7) mt 2 UUH =71 A(AT A1 AR

Note that (22.7) is a projection matrix onto noise space.

Notice that IT + IT+ = I.

For no noise, the array output is confined to n-dimensional subspace of complex
M dimensional space( where n is the number of sources and M is the number of
sensors) which is spanned by the steering vectors. n < M should be satisfied for a
solution. For no noise case, rank(R) is n. R is rank deficient in that case (777).

23. VANDERMONDE MATRIX

A matrix A € CM*N ig called Vandermonde if it has the structure

1 1 1
z1 Z9 ZN
2 2 2
M-1 M-1 M-1

21 29 s 2N

If 2z, # 2, Vk,pk # p and M > N, then rows of A are linearly independent
and rank(A) = N. Note that ULA steering matrix has this form and forward-
backward spatial smoothing (FBSS) algorithm can be applied in this case which
solves multipath problems.
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24. LEAST SQUARES SOLUTION (LS)

Ax = B where AMXN oNxP pMXP Qolution is pseudo-inverse.

(24.1) r=A"B=(AA)1AB = ;2" Wl B
where A = UV,
(24.1) is called Moore-Penrose Pseudo-Inverse. It sets small eigenvalues to zero.

By that way, ||Az — B||? is minimized. In other words, Az = B + AB problem is
solved in least-squares sense such that min||AB||? is obtained.

25. TOTAL LEAST SQUARES SOLUTION (TLS)

Consider the minimum perturbations AA, Ab. Then minimize ||[AAAB|[?, s.t.
(A+ AA)z = B+ AB.

In TLS, there is a an also error on A. But in LS, A is error free.

Let

)

e q[= o] [
(25.1) (A B =[in ] { g EJ L;f
where A is M x N, Bis M x P. Size of iy is N, @iz is M — N, {1 is N and 94!
is P.
Partition vy as

(25.2) o= (ol ot
where size of 04} is N and size of 94}, is P.
Then,

(25.3) orLs = —U2175

if U5y exists.
If you know A very well, use LS otherwise use TLS.

26. QUADRATIC MINIMIZATION

Let A be N x N Hermitian symmetric positive semi-definite matrix. zV>*M

BNXK  CMXK  Then, minimize 2% Az s.t. BHz = CH. Tt corresponds to beam-
forming. For example x may be weight vector. Minimize sidelobes, except at signal
of interest (SOI). Optimum solution is,

(26.1) z,=A"'B(BHATIB)"1cH

Proof
(26.2) L=a"Ax + N (BH2 — OF) 4+ \T(BT2* — OT)
(26.3) 0L _ iy + M BH =0

oz
Then,



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES

(26.4) Az 4+ B =0

(26.5) x=—(A")"1BA
If A = A,

(26.6) r=—A"'B\

Apply the constraint

(26.7) By =cH

(26.8) —-BHATIBAN=CH

(26.9) A= —(BfA-1B)~lcH

(26.10) r=A"'B(BPAT'B)"1CH
27. CHECK

Equation (19.10): w,?

27
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Part 4. 11/03/14 Lecture Note
28. CRAMER-RAO LOwWER BounD (CRB or CRLB)

CRLB is a lower bound on the accuracy of any unbiased estimator. CRLB
provides an algorithm independent benchmark against which different algorithms
can be compared. Performance is usually measured by root-mean-squared error
(RMSE).

(28.1) MSE = E{(§ — 6)*>} = Var(d) + Bias?(f)

where 0 is true and 6 is estimated value.

RMSE

P S Alse 2
H'Iaﬁ!1
cRE

> SNR

F1GURE 28.1. An Example RMSE Plot

Assume that 0 is an unbiased estimate of  and let the covariance matrix of 9,

c;.

(28.2) Cy=E{(0-0)0—-0T}

Then there is a matrix such that C; > Cgp in the sense that Cj — Cgrp is
a positive semi-definite matrix. (Diagonal values of this matrix is greater than
diagonal values of that matrix. Individual elements variances are greater.)

29. FISHER INFORMATION MATRIX

Let = be vector of observations, 6 be the vector of parameters.

(29.1) J = FIM(0) = E{g:,091.6}
where
(29.2) G0 = Volnfeo(z,0) = VoP(z,0)

where f; ¢(x,0) is likelihood function. g, ¢ is called as gradient of the log likeli-
hood function. Elements of J matrix

A OP(z,0) 0P(x,0) | _ 0?P(z,0)
(293) Jig = E{ 06, 06, =k 00,00,
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Then,
(29.4) [CRB(0)];; = [J i

Notice the indices in (29.4), we are only interested in the variances.
If 6, is the i*" component of 6, then its variance is lower bounded by:

(29.5) Var{0;} > FIM(6);;'

30. CRB EXAMPLE

Let
(30.1) y(t) = A(9)s(t) + e(t)
(30.2) R, = E{y(t)y(t)"}) = AR;A" + R, = AR,AY + 521

29

In (30.2) it is assumed that signal and noise are uncorrelated and noise is white

noise both temporally and spatially.
Then,

(30-3) A= [a(d1) al¢2) ... a(én)]

Let define a vector «

(30.4) as ot pT o2

where p is vector composed of the elements of Rj.

(30.5) $L [ do ... ¢n]

Then,

OR OR

: FIMy, =N xT YRP LR

(30.6) .k x Tr { Jar, R, D, R, }
2

(30.7) CRB(¢) = ;—N {Re [(D"TI}D) © (R, A" R, ' AR,)"]}

where N is the number of samples (snapshots) and ® is Hadamard product
operator.

And
(30.8) D2 [dl do ... dn]

da(¢r,)

. d, &

(30.9) 5 oo

(30.10) My 2 A(ATA)~1 AR
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(30.11) Oy £7-1,
For a single source,
1
(30.12) CRB ~

2% N x SNR x [|a(¢)]|2

where a(¢) is derivative of the steering vector. a(¢) = d;
For M element ULA,

)\2
30.13 CRB ~ _
( ) 812 X N X SNR X cos?¢ x d?
where
(30.14)

M
2EYN &

where d,,, is the distance of the m*"

CcRE

Il\

sensor to the origin.

: >
Yox o )\ ¢

o\ .
EMBI  Goesigw Endfit

FiGURE 30.1. Approximate CRB of ULA with Single Source

When the measurements are (locally) loosely dependent on the parameter, FIM
approaches to zero or has singular values as shown in Figure 30.1. There are
singular points for CRB. ¢ = 180° (endfire) for a ULA is a singular point. CRB
is not predicting correctly for this case. For example, MUSIC algorithm can find

at those points with accuracy of approximately 10°. Therefore, approximation is
invalid in that angles.
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31. CrassicAL METHODS FOR DOA ESTIMATION

Amplitude Based Methods

Phase Based Methods

Frequency Based Methods (Doppler)
Time Based Methods

Hybrid Methods

32. CoMMON DIRECTION FINDING TECHNIQUES

Directional Antenna (Sensor)
Wattson-Watt
Pseudo-Doppler
Interferometer

33. DIRECTIONAL ANTENNA (SENSOR)

A single directional antenna is rotated in order to find the DOA angle.

FIGURE 33.1. Directional Antenna

10:40
Advantages:
e High sensitivity due to antenna directivity
e Simple and cheap (Single channel system)
e Resolution of multipath signals
e Same antenna can be used for direction finding and monitoring.

Disadvantages:

e Probability of intercept is inversely proportional with directivity
e Fails for short duration signals
e Mechanical rotation is problematic.

34. BUTTER ARRAY

Instead of a single antenna, an antenna array with different phase shifters and
combiners are used to obtain directional patterns.
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Jpliries g 3

I
,—?)_F\nn.lﬂg Those Shifer
Combiner |— J

FIGURE 34.1. Butter Array

35. MONOPULSE

A variation of beamformer direction finding. Usually used in radar systems for
tracking sources. Two overlapping antenna beams are formed which are steered
slightly in different directions. This method is taking the difference between the
output of two beams.

_gg —> Ecrl‘iffj ht

FIGURE 35.1. Two Beams

Response if the monopulse system is given as

AP AP
(35.1) o) = 5 ( a6+ F| ~ a6~ Ty )
where A is the offset angle.
Then,
1 A A
(35.2) o) = 5 (Bo+35)-Bo-3)

where B(¢) is the beam pattern. And if A is small, then

(35.3) b(¢) ~ B(¢)

Output is positive if the emitter is to the right of the boresight and negative
otherwise.
This method is useful for tracking.
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A Amplitude

_z—\[\/\/'\ N
'\J;\/\eUV > P

0° g
FIGURE 35.2. Monopulse Response

36. SUM-DIFFERENCE METHOD

This is used to implement the monopulse idea with a sensor array. The array is
divided into two parts: + and - parts. Let the array output be:

yi(t)
y2(1)
(36.1) y(t) = :
ym(t)
Sum response is obtained as follows
(36.2) uy, = wiy(t)
where
1
1
(36.3) ws =
1

Similarly difference response is obtained as follows

(36.4) ua = wiy(t)
where
1
1
36.5 wa 2 |
A :
-1
—1

where in (36.5), half is 1 and half is -1.
The sum and difference beam patterns are
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(36.6) 2(¢) = wyla(9)

(36.7) A(¢) = wR a(¢)

R ;

FIGURE 36.1. Sum-Difference Method

beg) )

For ULA,
M sin (M’B)
(36.8) Y(p) = Zej(kfl)ﬁ _ 72ej(M71)ﬁ/2
k=1 in [ 2
sin | 5
where
A 2T
(36.9) 8= Tdcosqﬁ
Also,
M/2 M 2sin? (M)
(36.10) A(g) =Y jelt=DF 4 N _jel(h0E < N\ 4 sy
=t k=M/2+1 sin | =
2
Then,
A(¢)
(36.11) fl) 2
()
M M
(36.12) £(¢) = tan (45) — tan (”5;03‘75)

In practice,

(36.13) ¢~ f1 {Re {Z‘QH

It is an amplitude technique. It is used in radar. However, since it is not using
the full information, it is not used in direction finding.
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37. WATTSON-WATT METHOD

Frequently used. It is small and accuracy is acceptable. This is also amplitude
comparison technique. It has 180° ambiguity. It is solved by a sense antenna or by
combining all antenna outputs ti get reference signal.

F1GURE 37.1. Crossed Loop Antenna

37.1. Crossed Loop Antenna. Advantages of decrease in size. But it is sensitive
to sky waves (reflections from sky etc..).

— SREF, Swis , SEw

g S

z +

FIGURE 37.2. Adcock Antenna
37.2. Adcock Antenna. Then,

(37.1) Srer(t) 2 Sn(t) + Ss(t) + Se(t) + Sw(t)
(37.2) Sns(t) £ Sn(t) — Ss(t)
(37.3) Sew(t) = Se(t) — Sw(t)

Then,
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2w 2
. ind . ind
Jj—cospsin e—] ——cospsin

(37.4) Sns(t) = s(t)sin(0) (e

2 2
J—singsinb 7stin¢sin0

(37.5) Sew(t) = s(t)sin(0) (e d —e
g\‘-j
D€
‘l’ N
2
F— f
U

S

o«

i d—

FIGURE 37.3. Sensor Placement

. (27 )
| S s

2
sin (;dcosqﬁsinG)
For (37.6), d/A should be small.

fias Erar
;.0" d/N=0.2
6;. 3/ = 03

e f t t— > P-(’
l 50" |3Q° 1:%’ 36&’

FIGURE 37.4. Bias Error

11:40
Advantages:



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 37

L - »
- -

FIGURE 37.5. Figure of Eight

e Instantaneous bearing report
e Relatively small size for the operating frequency
e Acceptable bearing accuracy (5°)

Disadvantages:

e Better accuracy is possible

e No immunity to multipath signals, co-channel interference. (Indeed there
is no algorithm immune to multipath except maximum likelihood which is
a super-resolution method(?77))

Crossed loop has problems especially for signals coming from elevated heights
such as sky waves. This generates bearing errors. Adcock antennas are proposed
to solve this problem.

D/X < 0.2 is desired in order to have a figure of eight characteristics close to
circle. (Really ?7?) But increase in separation is good thing to increase aperture.

38. PSEUDO-DOPPLER METHOD

It is possible to mechanically rotate an antenna on a circle to find the DOA angle
from Doppler effect. However, electronic switching is preferred in order to avoid
mechanical operation.

Advantages:

e Simple operating principle
e Single channel, cheap, system
Disadvantages:

e Antenna sampling introduces signal distortions and DF error.
e DF accuracy decreases as elevation angle decreases.

e Accuracy is low, possibly worse than Wattson-Watt.

e Dwell time on signal is low due to switching.
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Bearing
. £5+lvmo40r

FiGURE 38.1. Pseudo-Doppler Method

(38.1) s(t) = acos (wot + @cos(mrt —¢)+ <p>

where wy is operating frequency, w,. is rotation frequency, and ¢ is constant phase
offset.

Define
(38.2) B = wot + @cos(wrt —¢)+
(38.3) w(t) = aé _ wo — @sm(w - 9)

Codt A
where w(t) is instantaneous frequency.
If a high-pass filter is used, then

2

(38.4) sp(t) = —WTRsin(wrt — )

Then modulate the signal
(38.5) sg(t) = sp(t)sin(w,t) = —?wr [cos(¢) — cos(2w,t — @)]

Apply low-pass filter

R

(38.6) sp(t) = —%wrcos(qﬁ)

Then,

A

(38.7) ¢ = cos™? [wa SF(t)]

Generally rotation frequency is around kHz.
This method is used especially in air planes. Accuracy is around 3 to 10° is
sufficient for search and rescue operations for example.
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Generally, accuracy: Interferometer > Wattson-Watt > Pseudo-Doppler
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Part 5. 18/03/14 Lecture Note
39. INTERFEROMETER

This method uses the phase information. There are both phase dependent and
phase and amplitude dependent implementation of interferometer technique.

39.1. Correlative Interferometer. This method is both amplitude and phase
based technique. In that technique, you have sensors and transmitter turning
around. You simply record signals for each angle. You calibrate sensor. At runtime,
you correlate with table and find angle. Simple, effective and commercially used.

39.2. Phase-Based Interferometer.

~3 Far
Field

._\¢_ —@—- — —DOX Base line.
e—3—

F1GURE 39.1. Far Field Source, 2-Channel Array

39.2.1. 2-Channel Case.

(39.1) 7= dc‘;‘9¢

Note that in Figure 39.1, source is far field.

(39.2) y1(t) = s(t)el<!

is assumed to be received by the reference sensor. Then,

(39.3) Yo(t) = y1(t — 7) = s(t — 1)l =)

Using narrowband assumption:

(39.4) yalt) = ()BT = gy (p)e=IT
Notice that we apply narrowband assumption immediately, not after demodula-
tion.

Let,
(39.5) ¢1(t) £ Ly (1)
(39.6) 6a(0) £ Za(t) = 61(1) — “LL2 = 61(1) — D aeoss
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Then,
(39.7) B1(0) ~ (1) = deoso
Finally
39.8 = cos™? A
(39.8) ¢ =cos™" |(1(t) — ¢2(t))ﬁ

Angle is found by cross-correlating two signals. Angle is found with respect to
baseline. There is also a ambiguity for minus angles. Also elevation angle could
not be identified.

39.2.2. 3-Channel Case. It can also find elevation angle.

{\3 4 4D

‘ﬁ\@\\a(mﬂ

FIGURE 39.2. 3-Channel Array

Most robust design when geometry is equilateral triangle.
Take the first sensor as the reference

(39.9) y2(t) = s(t)e??™/* [~dsin(r /6)cospsind + dcos(m/6)singsind)
(39.10) y3(t) = s(t)e?*™/ [dsin(n/6)cospsing + deos(w /6)singsind)
Let
(39.11) $1(t) = Ly (t) =0
_=

(39.12) Ba(t) 2 Lyo(t) = 3 [—dsin(7/6)cospsing + dcos(m/6)singsind)]

=il

(39.13) p3(t) = Lys(t) = \ dsin(m/6)cospsing + dcos(m/6)singsind]
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2 (2 — 1) + (3 — ¢1)

39.14 )
( ) (¢3 = ¢1) = (¢2 — ¢1)
cos(m/6)singd
1 =
(89-15) v sin(mw/6)cosd
As a note,
A 1 e T2 713
(39.16) Ry =+ Syt = o e s
t=1 31 T32 T33
then7 ¢2 =T12 and ¢3 = T13.
Azimuth angle could be found as
(39.17) ¢ = tan " [tan (7 /6)v)]

Notice that it is exact contrast to Wattson-Watt. The only assumption is nar-
rowband.

(39.18)
B2 [((¢2 = ¢1) + (03 — d1)) sin(m/6)]" + [((¢5 — ¢1) — (62 — 61)) cos(n/6)]

(39.19) B = 4Tﬂ-dsm((b)%sm(ﬂ'/S)
Elevation angle is
Tdsin(w/iﬁ)

Those are non-linear expressions and generally linear expressions are more robust
to errors.
Advantages:

e Azimuth and elevation angles are found
e No approximation is involved as in Wattson-Watt
e Good DOA accuracy

Disadvantages:

e Same as other algorithms including super-resolution
e Works for only one source

All classical methods work for one source case. Interferometer, Wattson-Watt
and Pseudo-Doppler fails in other cases (multipath). But super-resolution works.
But commercial systems use classical approaches generally.
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FIGURE 39.3. Multipath Case
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F1cURE 39.4. Different Sources with Different Spectrum or Time,
No Problem
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Ficure 39.5. Multipath Problem, R is Rank Deficient

40. OPTIMUM AND CLOSE TO OPTIMUM DOA ESTIMATION

43

Maximum likelihood is optimum algorithm. MUSIC is also reaches CRB in ideal

conditions. Ideal means for example there is no multi-path.
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When there is only one source signal there is not much difference between super-
resolution and classical techniques. Especially, interferometer is as good as super-
resolution techniques at suitable conditions.

When there are more than one source signals, the subspace (super-resolution)
methods perform significantly better. Classical methods may fail completely. They
can identify and perform beyond Rayleigh limit. Therefore, they are called super-
resolution methods.

There are several methods for DOA estimation based on subspace techniques
(noise and signal subspace as mentioned which are orthogonal).

MUSIC (Very Good, Not Ounly for DOA)

ESPRIT (Very Good, Not Only for DOA)

Min-Norm (Load Efficient, Inferior)

Maximum Likelihood (The Best, Heavy Load and Convergence Problem)

0

~
S

. e e o o

41. MUSIC (MULTIPLE SIGNAL CLASSIFICATION)

One of the most powerful methods in DOA estimation. There are two versions
of algorithm.

e Spectral MUSIC: can be applied to any sensor geometry, computationally
intense.
e Root MUSIC: valid for only linear array, fast algorithm.

(41.1) y(t) = As(t) + e(t)

(41.2) R, = E{y(t)y(t)"} = AR,AT + R. = AR AT + 021
. 1 Y

(41.3) Ry =+ > u®y®)"

(41.3) is called sample covariance matrix. It is best estimator under AWGN.
After SVD

(41.4) R, =VAVH
where
_)\1 -|— 0’2 T
2
(41.5) A= Antot

and
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(41.6) V:[vl Vo ... Up Upgl .- UM]

n is the number of sources.

(41.7) rank(AR,A®) = n if M > n noise free case (?77)

(418) SMxNé[’Ul vy ... Un]

where S in (41.8) contains eigenvectors of signal subspace vectors. Similarly,

(41.9) GMx(M—N) e [’Un+1 Un42 ... UM]
where G in (41.9) contains eigenvectors of noise subspace vectors.
Note that vectors in (41.8) and (41.9) are orthogonal to each other.
(41.10) R,G = ARA"G + oG = 0*G
Note that AR is a full-column rank matrix. A represents the signal subspace.

True DOA angles {¢;,}}_, are the only solutions of the equation.

(41.11) a (pp)GGH a(py) = 0 for any M > n

Note that GGH is orthogonal projector on R(G) which is noise space.

1
a(¢)GG™a(¢)
(41.12) is called as MUSIC pseudo spectrum.

A pLp)

(41.12) p(d) &

| @1

FiGURE 41.1. MUSIC Pseudo Spectrum
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42. MUSIC ALGORITHM

Compute the sample covariance matrix

(2.1 = 5 Do wlowo”
Find
(42.2) G=[nt1 Vng2 ... VM|

42.1. Spectral MUSIC. Find the DOA angle estimates as the locations of the
n-highest peaks of the function

1
42.3 = —
(42.3) p(¢) o () CCH a(0)
where ¢ € [—7, 7]
This algorithm requires search.
42.2. Root MUSIC. Let
(42.4) a(z)=[1 27t ... z~WM-D]

for ULA.

Consider the equation aT(z*I)G'(A?Ha(z) = 0 polynomial roots. Angular posi-
tions if the n-roots (inside the unit circle) which are closest to the unit circle are
the DOA angles. It is a fast algorithm. However, it can be applied to only linear
array.

1l 0

- -
- ¢
[

f

cns P2 .
Q,‘ o.. [_ ,\,951 : > pr_i-i]

. 2-plane.

- -
- -

FIGURE 42.1. z-Plane

For MUSIC algorithm, n < M should be satisfied and sensor position should be
known. Performance of MUSIC is good. It is a sub-optimum subspace algorithm.
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43. MUSIC ALGORITHM APPLICATION
Let ¢ =60°, M =2 and d = \/2.

43.1) 0(8) = | yam/paons| = | sore] =[]
43.2) y(®) = a(@)s(t) + (!
(43.3) &:m%@wyzﬁ f%ymy

Let 02 =1 and 02 = 0.

oo nef; 3)-[5 EG 1 A

There is one source, then

Vi
@ o[V
(43.6) G- [jf\/f//;]

11:40
1

1 PO = GGG aH )
s oo - [ 52, %]
(439) a((b) = |:€j27r/}\dcos¢:| = |:ej7rlos¢:|
(43.10) Q2 d(p)GGHaH(¢) = 1 — sin(mcosp)

Qmin = 0 (noise-free case), then ¢ = +60°.

44. MIN-NORM ALGORITHM

Inferior algorithm comparing to MUSIC, seldom used. MUSIC uses (M-n) lin-
early independent vectors in G. Min=Norm uses a single vector which is a good
candidate to represent those vectors in G. By doing so some computational savings
is achieved with a certain loss in accuracy.

Let [1g]T be the vector R(G) (range space) with first element equal to 1 that
has minimum Euclidean norm.
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44.1. Spectral Min-Norm. The locations of the n highest peaks in the pseudo-
spectrum given in (44.1) corresponds to the DOA angle.

(44.1)

44.2. Root Min-Norm. The angular positions of the n roots of the polynomial
given in (44.2) that are closest to the unit circle are DOA angles.

(44.2) T (=) H
g
OK But how can I find §7
H
(44.3) 80xn = [0‘5 ]

In (44.3), § is signal space eigenvectors. a!! is 1xn row vector and 5 is (M-1)xn
matrix.

Then,
1
44.4 sl =0
(44 3
Then,
(44.5) 5= —a
(44.6) §=-5(5"5)"a

(44.6) is LS solution.

(44.7) s =T=aa" +35"5
Then,
(44.8) 5 =1—aal

Using (44.8) in (44.6)

44. .
(44.9) g T aall

Performance loss is significant.
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45. FORWARD-BACKWARD SPATIAL SMOOTHING (FBSS)

For one way spatial smoothing M > 2n is required (777). For two way spatial
smoothing M > 1.5n is required. Two-way reduces the array size.

Multipath os an important error source for DOA estimation. FBSS can be used
to solve this problem. FBSS can only be used in linear arrays due to Vandermonde
matrix structure.

E

Snwr &IV'IW*J

@ g ® @ © PP™

FiGURE 45.1. Multipath Problem

m=5, L=le/ P13

F1GURE 45.2. Overlapping Sub-Arrays

Obtain
N
. 1 "
(45.1) Ry =5 yy(®)
t=1
Define
0 0 1
0 1 0
(45.2) J £ .
1 0 0
(45.2) is off-diagonal matrix.
Obtain
~ 1 /- N
(45.3) Rarsas = 5 (%, +JRJ)
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K
1 -
(45.4) RI® = 174 szTRzk
k=1
where
(45.5) Zharxe = [0 Ioxr 0]

where identity matrix starts from &** column in (45.5).
Last step is simply summing ‘diagonal matrices‘ of R. For example, let

(45.6) R=

S S o
SO e o

a
e
{

m

" o~

Then for example,

wn e

M is number of sensors, L is subarray size and P is the number of subarrays.
3
L >nand M > Ln-‘ should be satisfied. (round or ceil ?7?7) [] is ceiling

operator.
For example

n M L P
2 3 3 1
3 5 4 2
4 6 5 2

If n increases but P stays there, you may have problems.

46. WHAT DOES COHERENT SOURCE MEAN?

Suppose we have s;(t) = s(t) and we have also sa(t) = ae’#s(t) in narrow-band
case. Then,

(46.1) 5= [28]

And

11 O[EijﬁTll
46.2 = .
(46.2) R [aejﬁrn la?r11 }
Matrix in 46.2 is rank deficient. Rank of this matrix is 1 whereas it should be 2.
Coherent sources mean fully correlated sources. In that case you can’t separate.
For wide-band case s1(t) = s(t) and we have also s2(t) = as(t — 7)
Notice,
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(46.3) R, = [}3 ﬂ

|8] < 1 should be in (46.3). If it is 0, you have uncorrelated sources and perfect.
But if its absolute value is close to 1, you have problems. For fully-correlated case

it is 1.
In smoothing, price is that: You start with Ry« s but ends with RLxL L<M

is always true. Win rank but loose aperture.

/w /S'ffﬂ

O 0 O
S:ns'nr Elemerts

FI1GURE 46.1. Multipath Causes Fully Correlated Source Signals
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Part 6. 25/03/14 Lecture Note
47. ESPRIT METHOD

It uses signal space (a subspace algorithm). It can be applied on the only certain
geometries. When I move subarray by A distance I need to get the second subarray.
Therefore, there is a baseline and it should repeat itself for every doublet as shown
in 47.1.

It is a powerful method for parameter estimation.

0 oullat
S Ve Y

larrayi2 Sokarrsy #

FI1GURE 47.1. ESPRIT Method Array Partitioning

Shorray #2
,M

N~ — TN T
sq\armj #\

FIGURE 47.2. Subarrays for ULA
M is the number of sensors. My = M; = M/2 is the number of sensors in the

subarrays. M/2 > n or M > 2n where n is number of sources.
Unambiguous DOA estimation is possible if A < A/2.

(47.1) y(t) = As(t) + e(t)
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Let
(47.2) A= {‘22]

where A; stands for subarray 1 and A, stands for subarray 2. Due to required
geometry

(47.3) Ay = A\D
where
(474) D A diag{efjwoAcos(dJﬂ/c’ e*jwoAcos(¢2)/c, s efngAcos(tﬁn)/c}

D has n eigenvalues M, A2, .. Apn. And

(47.5) arg{\;} = —M

¢; can be found from ;.
Let the signal subspace eigenvectors organized as follows

S

where S; stands for subarray 1 and S stands for subarray 2.
Assume

(47.6) S = {Sl}

(47.7) R=ARA" +o°1
Then,
A1
A2
(47.8) RS =S . = AR A" S + 0,8
An
Then,
(47.9) S = AR, AT SAT!
where
)\1 — 0’2
_ /\2 - 0'2
(47.10) A&
p—
Define

(47.11) c2 RAHSAT!
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Then,
Syl (A
ras 3] - [4]-
(47.13) Sy = AyC = A DC = S,C7'DC = 5,®
where
(47.14) ®£1C'DC

In (47.13), C' is full-rank square matrix then its inverse is exist. D is a diagonal
matrix. C~1DC is a similarity transformation over D.

Note that eigenvalues of ® are same as eigenvalues of D.

Ay, As, S1 and Sy are full-column rank.

From (47.13)

(47.15) o= (SHs))"1sHg,

® is related with D over a similarity transformation and ® and D have same
eigenvalues.

ESPRIT estimates for {®;}2_, are obtained from —arg{\;} where A} are the
eigenvalues of

(47.16) Oy = (S7191) 715115,
Advantages:

e No need to know steering matrix or sensor positions except a doublet

e Sensors in the array do not need to be match except the ones in the doublets

e DOA angle is estimated without search. It is a fast algorithm.

e The solution returns only number of sources not more or less. We assume
that we know number of sources.

Disadvantages:

e ESPRIT computes DOA angles using a base line. Hence, it has 180° am-
biguity.

e A < \/2 to avoid spatial aliasing.

e When the array is placed in a platform, doublets may not be affected sim-
ilarly.

e ESPRIT uses the information in sub-arrays. Therefore it is not as effective
as MUSIC.

48. MAXIMUM LIKELIHOOD METHODS

Previous methods are not optimum. ML methods are optimum but not compu-
tationally efficient, they are usually search based.

Coherent Signals: Two signals are coherent if one is scaled and delayed version
of the other. Sub-space methods can not resolve coherent signals except FBSS with
ULA. But ML algorithms solves.

Consistency: An estimate is consistent if it converges to the true value when the
number of data tends to infinity.
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Rens € ("

ESPANT
MuSIC.

> SN&K

FIGURE 47.3. ESPRIT vs MUSIC in General

Statistical Efficiency: An estimator is statistically efficient if it asymptotically
attains the CRB which is a lower bound on the covariance matrix of any unbiased
estimator. The difference between consistency is that even if data is not infinity
statistical efficient algorithm tends to close CRB. For example, MUSIC is statistical
efficient is under ideal conditions (AWGN, n < M, well-known sensor positions
etc...).

Subspace methods (MUSIC, ESPRIT) are sub-optimum. ML algorithms are
optimum. They can solve coherent signals.

Disadvantages of ML algorithms are computational expense and local minima
problem. Two ML algorithms exist: Deterministic and Stochastic ML algorithm.

10:40

49. DETERMINISTIC ML METHOD (DML)

Noise is modelled as stationary AWGN random process. It is also spatially
white and circularly symmetric. The signals are deterministic(discard statistical
information even if exists) and unknown.

(49.1) y(t) = As(t) + e(t)

Complex random process is circularly symmetric:

(49.2) E{z[n1]z[ng]} =0
This implies that

(493) Rw,. [nl, no] = Ra:L [nl, ’n()]
Basically

(49.4) z[n] = x,[n] + jz;n)
Then

(495) Rmimr [nla nO] = 7R:E,«xi [nla no]
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What is the significance of circular symmetricity? In order to define covariance
matrices for complex case it is required.(??77?)

Then,
(49.6) Ee(ty)e(ta)™} = 0216, 4,
(49.7) E{e(t)e(t2)T} =0

Observation vector y(t) is also circularly symmetric and temporally white Gauss-
ian random process with mean As(t).
Let’s write PDF of y.

My(t) — As(0)]?
(498) fy(y) = (7_(_0_2)]\/[6 g

Then, likelihood function

N Hy(t) — As(1)|?
(49.9) Lpmr(o,s(t),o H o2

t=

—

N is the number of observations.
Write negative log-likelihood function ignoring constants normalized by 1/N.

N
1
(49.10) Ipar = Mlogo® + = > lly(t) — As(t)||?

t=1

Note that non-linear least-squares and DML are the same for Gaussian noise.

(49.11) =5 Z ly(t) — As(1)]”

(49.11) is non-linear least—squares.

(49.12) 5(t) = (AT A)"TATy(t) = ATy(t)

(49.12) is LS solution.
Put (49.12) in (49.10) ignoring some terms.

N

(49.13) §(t) = 3 D Ilu(t) — A4 4) Ay ()
t=1

(49.14) _ %Z [T — ACAH A)~1 A"y (1) 2
Let’s define )

(49.15) My & AATA)~1 AR
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is a projection onto signal space.

(49.16) My 271104

Then open norm expression

1

N
(49.17) () =~ >y ATy (1)

Notice that from properties of projection matrices TT4IT4 = TI%.

57

N
. 1
(49.18) 5() = —x > tr{y() " hy()}
t=1
Notice that in (49.18) y(¢)7IT4y(t) is a scalar value and trace of a scalar value
is itself.
Remember
(49.19) tr(AB) = tr(BA)

in general. Then,

(19.20) $(t) = o > {1y 0y}

Also remember,

(49.21) tr(A) +tr(B) = tr(A+ B)
Then,
(49.22) 3(t) = %tr{HTA% > uy("}
t=1

Notice that

N
1

(49.23) Ry =+ > u®yt)"

t=1

Then

1

(49.24) 3(t) = ;tr{HERy}
6ZDML M 1 T

(49.25) 502~ oz~ galr{laR,} =0

Then,
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1
(49.26) o? = Mtr{HTARy}
Finally
(49.27) éDML = argmin tr{HzRy}

Measurement y(t) are projected onto a model subspace orthogonal to all antici-
pates signal components and a power measurement like

N
1 1 2 1
(49.28) N;”HAy(t)H = tr{llz R}
is evaluated. The power should be smallest when the projector removes all the
signal components.
In implementation, you select ¢ and generate Hj and search. For n source
n-dimensional search is required. ¢ steps vary.

50. StocHAsTIC ML METHOD (SML)

The signal waveforms are modelled as Gaussian random process.

(50.1) E{s(t1)s(ta)"} = Ryby, 4,
(50.2) E{s(t1)s(t2)"} =0
(50.3) R, = AR A" + 5°1

unknowns are ¢,R,,02.
Negative log-likelihood is proportional to (ignoring constants)

N
1
(50.4) I== Y IMRy@)I)? = tr{IIR, }
t=1

For fixed ¢ minimum with respect to o2 and R, as follows:

~ 1
(50.5) Genr(9) = V—n ntr{HﬁRy}
(50.6) Ry(¢) = AT(Ry — 08y 1)(A)H
(50.7) Gsnrr = argmin log| AR A" + 0%, 1|

In (50.7), || is determinant. It is a generalized variance measures the volume of
confidence interval for data.

Both algorithm are nearly same for uncorrelated signal and noise case. But
difference is observed under correlated case, low SNR, etc. Deterministic ML is
easier to compute.
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11:40

51. BEAMSPACE PROCESSING AND BEAMFORMING

’ 0
\ . .
' = )
—_ DT=>
: > ’ : .::‘:
) / .
' g Dime! Dime§ DimeS LY ==
Dime o

Bcum{' “""I"\j

FI1GURE 51.1. Beamforming and Beamspacing

Array perform spatial sampling of the wavefront similar ti temporal sampling.
a(¢) characterizes the array as a spatial sampling device. If it is known, array is
said to be calibrated.

F1GURE 51.2. Narrowband Beamforming

Spatial filter (coefficient vector) h can be selected to enhance SOI (signal of
interest) and suppress interference. SOI and interference may cover the same time-
frequency domain. They can be separated in spatial domain.

For h we desired to have

e It passes the SOI undistorted
e It attenuates all the other signal, coming from different directions.

The power of at the beamformer output is found as:

(51.1) Output Power at Beamformer = E{y;(t)?} = E{h R,h}

where
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(51.2) Ry, £ E{y(t)y(t)"}
hH R, h should peak at the DOA of the source signal. This can be used for DOA
estimation.
For a single source n = 1 DOA estimation by beamforming is consistent. For
n > 1 it is inconsistent and bias can be large if sources are correlated or closely
spaced.
Beamformers can be classified in different ways:
e Narrowband Beamformer
o Wideband Beamformer (Underwater Acoustics)

Also in other way

Data Independent Beamformer

e Statistically Optimum Beamformer
e Adaptive Beamformer

e Partially Adaptive Beamformer

Also
e Transmit Beamforming
o Receive Beamforming (Our focus, closed for expressions available)

noP

v
=

F1GURE 51.3. General Beamforming Situation

52. DATA INDEPENDENT BEAMFORMER

The weight vector, h, is designed such that the beamformer response approxi-
mates a desired response independent of the array data or statistics.
Desired:

(52.1) ha(p) =1
where ¢ is SOI angle.

(52.2) a"!(¢)a(¢) = P
by normalization.

Let
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(52.3) R, =1
then
(52.4) Output Power at Beamformer = E{|y;(t)|*} = E{h"h}

The objective is minimize h h over h, subject to ha(¢) = 1.
Note that,

525 L ald) _a(9)

a(@)al¢) M

where M = P. Power in this case

a H a
(52) By (0 = 2O T®)

For one signal it is the optimum beamformer.
You can have this from Lagrangian.

(52.7) L=h"h+ M1 —hr"a(p)) + X (1 — hTa* ()
(52.8) % =h—Xa(¢) =0

(52.9) h = Aa(¢)

(52.10) ha(g) =1

(52.11) Xatl(p)a(p) =1

(52.12) I ()

at(¢)a(d) M
In receive case this type of problems may be solved by Lagrangian.
Note that, suppose there is only one signal.

(52.13) yr(t) = Wy (t) = ha(¢)s(t) + hp(t)
Note that hffa(¢) =1

53. STATISTICALLY OPTIMUM BEAMFORMER

We will talk about: MVDR (Minimum Variance Distortionless Beamformer)

61
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Part 7. 01/04/14 Lecture Note

Spatial filter (or beamformer weight vector) is designed based on the statistics of
the data received by the array. The goal is the optimize the beamformer response so
that the output containing minimum contribution due to noise and signals arriving
from directions other that the SOI. But computational cost is a question. We will
concentrate on narrow-band case.

\nhes - ) L/Sol
NS
ff, Ne'ise

~
ﬁrrc\tj

1""‘& ’ /; p Bl

FIGURE 53.1. An Example Situation

Idea is maximization SINR (Signal To Interference + Noise Ratio). MVDR: Not
distort SOI is the optimum beamformer. It requires the signal (Rs) and noise +
interference (R.) covariances. Our signal model is:

(53.1) y(t) = apso(t) + ars1(t) + agsa(t) + v(t)
(532) ’L(t) £ alsl(t) -+ a252(t)
(53.3) e(t) £ arsi(t) + agsa(t) + v(t)

where so(t) is desired signal, i(t) is interference, e(¢) is interference + noise and
v(t) is white Gaussian noise.

(53.4) Re = E{(i(t) + e(1))(i(t) + e(t))™}
(53.5) ss(t) = ao(¢)s(t)
(53.6) R, = E{ss(t)ss(t)"}

Note that
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(53.7) 1> Rank(R,) > M

Rank(Rs) > 1 for incoherently scattered sources or signals with randomly scat-
tering waveforms such as in radar, sonar and wireless communication. As an ex-
ample in practice

(53.8) R~ [ P@)a(o)a(o)"ds
This course we usually assume that signals are point sources. Our problem is
hH Ryh
. — = SIN
(53.9) W R.h SINR

by playing h where hf R;hH is SOI power and hf R.h¥ is signal + interference
power. We will have two cases:

e Rank >1
Minimize h R.h over h such that h R;h = 1.
e Rank =1
Minimize hff R.h over h such that hfa(¢) = 1.
Because R = o2a(¢)a(¢)

53.1. Rank > 1.
(53.10) L =h"R.h+ A1~ h" R;h)
oL
(53.11) oy = Reh = AR;h =0
Then,
(53.12) Reh = AR,h
. 1
(53.13) RZ'Rsh = <h

(53.13) is a generalized eigenvalue problem.
Then h,pt becomes eigenvector corresponding to largest eigenvalue of R;!R;.

53.2. Rank = 1. If R, = o2a(¢)a(¢)? then,
o2 a($)a(@)"h o2l a(d)?
h" R.h ~ hHR.

Then minimize h* R.h such that hfla(¢) =1 (distortionless response)

(53.14) SINR =

(53.15) L=h"R.h+ X1 —hTa(p)) + X (1 - hTa*(9))

oL
(53.16) ot = Reh—Xa(¢) =0
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(53.17) Roh = Aa(o)

(53.18) h=AR_'a(¢)

Putting constraint

(53.19) ia(¢) =1
(53,20 M (0)R: a(6) =1
(53.21) A= :
. af (@) Re a(9)
__ Rila(¢)
(53.22) hovt = BV R Tal)

You need to know R, also ¢.

54. CAPON BEAMFORMER

CAPON beamformer and MVDR turn out to be same for Rank = 1 case
(Rs = c2a(¢)a’(¢)) and noise and signal is uncorrelated. In general they per-
form differently.

Consider the typical array model:

(54.1) y(t) = A(9)s(t) + e(t)
CAPON tries to minimize hf R, h (array output power) over h such that hfa(¢) =
1. Suppress power everywhere except SOIL.

(54.2) L=h"R,h+ N1~ ha(e)) + N\ (1 — h'a*(9))
oL

(54.3) o = Byh = Aa(9) =0

(54.4) Ryh = Aa(9)

(54.5) h = AR, "a(¢)

Considering constraint

(54.6) Wa(p) =1

(54.7) Na (P) R Ta(¢) = 1
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1
(548) A= af (¢) Ry a(¢)
~ R/a(9)
(54.9) hcapon = —aH(qZ))R;la(qS)

where R, is true (not estimate) of covariance matrix if the array output. Different
from MVDR R, is switched by R,

10:40
55. PROOF OF THE EQUIVALENCE BETWEEN CAPON AND MVDR
BEAMFORMER
Assumptions:
(55.1) Ry = oZa(p)a(¢)”
(55.2) R, = o%a(9)a($)" + R.

In (55.1), Rank =1 is assumed at (55.2) uncorrelated source and interference +
noise is assumed.
Matrix inversion lemma:

(55.3) [A-CB'D"'=A"'+A7'C[B-DA'CI ' DA™
Set A=R., B=1,C =a(¢) and D = —a’’(9).

(55.4) R;'=R;'—R;'a[l+ad" R a] 'a" R

(55.5) R,'=R;' - %

(55.6) h= %

(55.7) h= a}]f;;;il(l_—azx) - alf]i’;a
where

(55.8) ae @ha

1+afR:1a

Then MVDR and CAPON are same under assumptions. Notice that we are
talking about R, which is not estimate, known perfectly.

Beamformer output:

(55.9) yr(t) = hy(t)
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Array output power:

(55.10) E{lys(1)1*} = E{h"y(t)y™ (t)h} = k" Ry
d?"R-1R,R1a 1

55.11 R Ry, = y__Y Y

( ) " (af Ryt a)? af Ryta

Then output spectrum of CAPON is:

I
al () Ry a(¢)

56. LINEARLY CONSTRAINED MINIMUM VARIANCE BEAMFORMER (LCMVB)

(55.12) fep =

CAPON beamformer can also be seen as linearly constrained minimum variance
beamformer. In case of multiple constraints minimize A Ry, h over h such that

(56.1) W la(é1) a(g2)] =[1 g]

In other words,

(56.2) hWenrr = 1

where f is a vector.

(56.3) L=h"Ryh+ (hc— fT)Agx1 + (KT — fT)A"
oL
(56.5) h=—R;"cA

Using the constraint

(56.6) — MR e = 1
(56.7) M= —fH (R o)
(56.8) M= —(c"R )7 f
(56.9) h=R, c(c"R; )" f
Original CAPON expression is similar to 56.9.
Given
—1
(56.10) h— — fe_ald)

af (¢) Rz a(¢)
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Notice that (56.10) is MVDR expression. The beamformer output becomes

R:'a
(56.11) yr(t) = hy(t) = m[aso(t) +e(t)]
e
R:'a
(56.12) yr(t) = so(t) + me(t)
Then,
(56.13) Signal Power ~ o2
a"R'R.R-'a 1
56.14 Noise and Interference Power ~ et e -
( ) W (aHRgla)2 a?R:'a
Then,
o2
(56.15) SINR = —3— = o2 a"R;a
a?R:'a

In practice R., R, and R, are usually not available. Sample covariance matrix
must be used.

1 < .
(56.16) Ry =+ ; y(t)y(t)

(56.16) is best under AWGN case.
The beamformers which use sample covariance are called as Sample Matrixz In-
verse (SMI) beamformers.

(56.17) hsa 1 = Eigenvectors of {]:Z;lRS} for Rank > 1
R71
(56.18) hsar = #_(f)) for Rank = 1
QH(¢)Ry a(¢)

This is SMI using CAPON expression, not CAPON. Substantial performance
loss is observed.

57. LOADED SMI BEAMFORMER

One of the most popular approach to robust adaptive (sample or block adaptive)
beamforming in the presence of array response error and small training sample size
is the diagonal loading technique. The idea is to regularize the problem by adding
a quadratic penalty term to the objective function.

Minimize h¥ Rh +~hHh over h such that hf R;h = 1 where v is penalty weight.

Solution is called as LSMI beamformer.

(57.1) L =h"Rh+~hHh + A1 - hHRh)
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(57.2) a% = Rh+~vh — ARsh =0
(57.3) (R+~yI)h = AR,h

A 1
(57.4) (R+~I)"'Rsh = 1

where h is the eigenvector corresponding to the largest eigenvalue of (R +
yI)~'R;. Similar to MVDR but we have R instead of R..

For Rank =1 case, R, = o2aa’’.

(R+~1)""a(9)
at(¢)(R+ 1)~ a(®)

(57.5) very similar to MVDR where R, is switched by R + ~I. Performance is
good.

What is v?

Usually around 0.1. You can find it in optimum manner.

(57.5) h=

58. AN EQUIVALENT FORMULATION FOR CAPON BEAMFORMER

It is called as Constrained Covariance Fitting.

Our goal is to maximize signal power while fitting o2a(¢)a(¢) to R impos-
ing R — o2a(¢)a(¢)? > 0 which is called as positive semi-definite matrix where
eigenvalues are not negative and eigenvectors are orthogonal.

New formulation is maximize o2 such that R — o2a(¢)a(¢)? > 0. It is same
as CAPON beamformer expression which is minimize h¥ Rh over h such that
hfa(¢) = 1. We will show that they are equivalent.

11:40

(58.1) R [R — o2a(¢)a(¢)™]h > 0 for any h € CM*?

Positive semidefinetness is used in (58.1). Rewrite using a constraint.

(58.2) R [R — o2a(¢)a(¢)™]h > 0 such that ha(¢) =1
Net result

(58.3) R Rh > % such that ha(¢) =1
Finally,

(58.4) 02 = min h Rh such that ha(¢) =1

(58.5) R—-c2aa>0

By multiplying 58.5 R=/2 both left and right side,
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(58.6) I—o?R™'V2a"aR™Y/2 > 0

Note that Rank(R~'/2aaR~'/?) = 1 it has one non-zero eigenvalue. I— that
matrix is 1— non-zero eigenvalue. Since Trace{} of a matrix is sum of eigenvalues
(in general ?), using Trace(AB) = Trace(BA) then

(58.7) 1-02a"R1a>0
Then,
1
2

1/a R=1a is the output signal power hence it is the CAPON estimate of the
signal power. (58.8) is equivalent to (58.1)

59. RoBusT CAPON BEAMFORMER WITH SINGLE CONSTRAINT

CAPON beamformer performs very well when the steering vector a(¢) is known
accurately and R, (theoretical) is used, However, if a(¢) knowledge is imprecise its
performance is not good.

Robust CAPON is extension of CAPON method that assumes a(¢) belongs to
uncertainty ellipsoid.

(59.1) (a—a)C""a—a) <

where a is known(measured) steering vector. C' is positive definite error covari-
ance.

When there is a little information about C, C' = el chosen and 59.1 becomes as
follows

(59.2) lla —al|* <e

59.2 is error ball.
The choice of € does not change the performance much.

By g, 1
1 Ralus’r z 1

A b 'I
v - 1 D

B (PR

FIGURE 59.1. Robust Design Example

The robust CAPON beamformer (RCB) solves the following problem:
Maximize o2 over a and o2 subject to R—o2aa’ > 0 and (a—a)?C~'(a—a) < 1.

S
To avoid from trivial solution aa = M is assumed.
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For a fixed a (if you know it) maximizing o2 is equivalent to

9 1
* aHR-1q

Then the problem can be simplified as minimize a®? R~!a over a such that ||a —
a||? < e by assuming C = el. This is RCB problem.

The steps of RCB algorithm:

First compute eigen decomposition.

(59.3) G

(59.4) R=UAUH

and set
(59.5) b=U"a

where

A1
(59.6) =
AM
Solve
S
k j—

(59.7) kz::l (ER YW

where A in (59.7) is our «y. Solve it using Newton Method assuming the solution
is in [Ar, Ay)-

N

- A

'
kn 'd.p}-
FIGURE 59.2. Example Plot for Equation (59.7)

Then compute
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1
(59.8) a=a—-UI+A\)""b= I+ XR—l)a
1\ !
(e 0)
(59.9) hrep = ) . —
Compare with LSMI.
(R+~I)"'a
1 h=—— 77/ =
(59.10) af(R+~I)"a
They are very similar. In fact if you use v = 1/, it will be a very good
beamformer.

In practice, RCB is the best. MVDR is a benchmark for us.

4\90& m VO0R
RCR

> SWR

F1GURE 59.3. Typical Performance Curve
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Part 8. 08/04/14 Lecture Note
60. GENERALIZED SIDELOBE CANCELLER (GSC)

Until now we saw block based adaptive algorithms. But GSC is sample based
adaptive. It is practical.

GSC is an alternative form of LCMV beamformer (CAPON).

Minimize hHRyh such that hflc = fH.

It is the implementation of LCMV.

Let hg be the optimum beamformer given as (previously known)

(60.1) ho = R, c(c" R, Ye) ™ f

ho is decomposed into two orthogonal components.

(60.2) ho = he — h,

h is defined to be the projection of hy onto the constraint subspace.
hy is defined to be the projection of hg onto the subspace which is orthogonal to
constraint subspace. This space is represented by B matrix.

(60.3) CH e Buxkx =0

The projection onto the constraint subspace.

(60.4) P.=cctc)y 1ot
And

(60.5) he = P.ho

(60.6) he=C(CHC)7Lf

This beamformer has closed form expression which is fixed.

(60.7) h, = —B(B¥B)™'B"hy = —Phg
where

(60.8) P-2T-P.

(60.9) h, =—-B(B"B)"'R;'C(C"R;'C)"'f

The constraint

(60.10) nifc = 1

(60.11) (' —nlhe =nllc —nllC
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(60.12)
H H H H — H H H p— — H p— H — H
(= nihe = fAetey-tee + (et R, o)y e RN (B B) T BY C

Notice at second term BHC = 0.

(60.13) (hF—nlhe = 1

Therefore constraint is satisfied. Since the constraint is satisfied, GSC converts
the constrained problem to an unconstrained one.
Let

(60.14) hp = Bh,

Minimize (h. — Bha)HRy (he — Bhyg) over hg.

Take the derivative with respect to h, and equate to 0.
(60.15) he = (BYR,B) B R,h,

.l.
—
hc — —G-) ' jF/U

y [£) G fixed Ix|
mrl Y Try to min-

v Y weiyhts
Qlocking Mo X Un(sas reinedl Tyhy

F1GURE 60.1. Implementation of GSC

Constrained problem is converted to unconstrained one. A data independent
beamformer, h, is used. h, is unconstrained and adaptive algorithms can be used
for it.

B is not unique. One method of finding B is

(60.16) Pt=1-C(CHc)"1cH

Orthogonalize P by Gram-Schmidt algorithm and choose the first (M — K)
columns as the B matrix.

In general, if the constraints are designed to present a specific response to signals
for certain directions and frequencies then columns of B will block these directions
and frequencies. Since h,. processes these according to constraints desired response
is achieved.

Example

Let ¢ = a(¢) a single constraint and hfa(¢) =1
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a(¢)
(00-17) "= @)
(60.18) a(@)" B =0

Each column of B can be seen as data independent beamformer with a null
direction ¢.

61. BEAMSPACE PROCESSING

The main advantage of beamspace processing is to reduce data and increase
computational efficiency.

g4 — —> Yu4lt)
By | K<m
g — —> Y
Bewms pace
E lement dpX2 N

) QL
[ \ ' fﬂ Z[H.#l

i
I f

| f t.—‘|ﬂ+-ﬂ‘l-
! i —> X

| S AT L
\ So"_f_ ! S'D| Sﬁh(w

g

-

A

FIGURE 61.2. SOI Selector

The variance of DOA estimates in beamspace is usually larger than the element
space. If you are estimate DOA it is generally better to it in element space.
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Increase in probability of resolution is possible if there is some information re-
garding the sector where the SOI lie. If two signal are close to each other you may
probably separate them in beam space easily.

10:40
(61.1) y(t) = As(t) + e(t)
(61.2) yo(t) = Bi'y(t) = ByAs(t) + Bue(t)

B,f{ By = I is desired in order to have white noise assumption valid in beamspace.
Hence it has no noise amplification.

— - in%
-

—>SNR

FI1GURE 61.3. Flooring Effect Due to Matrix Multiplication and
Coloured Noise

Let A, represents a beamspace matrix whose columns consist of a set of steering
vectors representing the sector of interest.
Taking the QR decomposition

(61.3) Ay =[Q1 Q2] [R1 0]

(61.4) By =

(61.5) (t) = Byy(t)

(61.6) Ry, = BIR,By = [41 i) Pl XJ [ar ]

62. BEaAMSPACE MUSIC

1
" aH(¢)Byiga B a(¢)

Note that a(¢) is still generated in element space.

(62.1) p®)
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63. BEAMSPACE BEAMFORMING

LCMV (CAPON):

RleHa(qZ))
63.1 hy = o b
(63.) "~ a(¢)" ByRy, Bl a(¢)

For multiple constraints in the element space

(63.2) he=fH

(63.3) h = Byhy

(63.4) wi (B C) = fH
(63.5) C,=B{'C

(63.6) Wic, =2

(63.7) hy = R, 'Co(CH R, 1Cy) 7 f

64. ADAPTIVE ALGORITHMS FOR BEAMFORMING

Two basic approaches
Block Adaptation

Slk)

' I !
i

FI1GURE 64.1. Block Adaptation

Statistics are estimated from a temporal block of array data and is used an
optimum weight equation.

Continuous Adaptation Weight vector is adjusted as data is sampled such that
the resulting weight vector sequence converges to the optimum solution.
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é\m" ,——\:,Coﬂ.u-s cre D‘An-'hca
>
\\*

FIGURE 64.2. General Adaptive Structure

Consider

(64.1) y(t) = a(@)s(t) +v(t) + e(t)
where s(t) is SOI v(t) is noise and e(t) is interference.

hfaR,a™h
64.2 SINR = ——=2———(77?
( ) hHRvJ,_eh ( )
(64.3) Ryye 2 B{(u(t) + e(t)(v(t) + (1))}
We know that h,, is the eigenvector corresponding to maximum eigenvalue of
R*l
R, {.aRsa' for rank > 1 case. And Hvitela for rank =1 case.
a’R | a

R, is usually replaced with the training data covariance matrix which is

(64.4) Ry = E{y(t)y(t)"}

“ L de)
Jl_l:,)_‘) @ ______.;,@ ef (&)

b Y

~
~

FIGURE 64.3. LMS Algorithm Implementation

(64.5) y(t) = h(t — 1) + py(t)er* (t)
Convergence depends on the eigenvalue spread. If the spread is large convergence
is slow.
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65. SIDELOBE CANCELLER

A simple structure of an adaptive canceller. It is shown in Figure 65.1.

W ey @4 ——'® oukp*
o) \n

EEYE 1NN 64@3‘1 J e\

Y/I’“ Refl o ___-a

FIGURE 65.1. Sidelobe Canceller

The main assumption is that the jammer signals are much stronger than the
SOI. Therefore adaptive weights are mostly controlled by the interference. Output
contains interference component close to primary.

N L
Jerame )

Gw(;‘_ -

FIGURE 65.2. Jammer Signal Suppression with Sidelobe Canceller

11:40

66. BEAMFORMING WITH A PILOT SIGNAL

66.1. Two-mode Case. Delay J; is adjusted to simulate a signal coming from a
certain direction. In P mode, input is due to pilot signal. Desired signal is also
the the pilot. A beam is formed towards ¢ direction. In mode A, input is due to
sensors. Adaptation is done to eliminate all received signals since desired signal is
zero. If we continue in mode A, weights send to zero. Therefore, frequent switching
between mode P and mode A should be done.

Note that as shown in from Figure 66.1, it uses delay terms. Any beamformer
uses delay terms is wideband beamformer (7).
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Sensor |

FIGURE 66.1. Two-mode Case

Y@
. tyhws
\\ oot | Cotaweiale
!‘\V p 5{!“\‘
S : ﬁ.ﬁemr

!
NV}
ey, \ Sve. \
:E%\\e\- E_D froesser

T £4---1

E3Y S"L-“':It

FIGURE 66.2. Single Mode Case

66.2. Single Mode Case. Signal reception on P-mode is possible. Adaptation
tries to reproduce pilot and eliminate all signals coming from the sensors. Therefore
a beam is formed toward ¢ direction where pilot is pointing.

As a note, GSC (Generalized Sidelobe Canceller) is developed after them and it
is the current state of the art. But roboust beamformers may be better than GSC.
However, GSC performs very well. These were usually in early analog systems.
You can do much better them.

67. NARROWBAND AND WIDEBAND BEAMFORMING

67.1. Narrowband Beamforming. Previous discussions were about the narrow-
band beamformers. The common structure as discussed was this

67.2. Wideband Beamforming. Figure 67.2 is time domain implementation.
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% U
o g = W gir)
Yol _—— .
? ®l X - ®
| ) ‘I
L h,:-\ N
Sn“’\ —

FIGURE 67.2. General Wideband Beamformer (Filter and Sum)

M K-1

(67.1) yrln] =Y > himyln —m)

=1 m=0
68. DFT DoMAIN WIDEBAND BEAMFORMER

DFT of each channel signal is taken. Each frequency has its own beamformer.

DFT and time-domain (filter and sum) based beamformers can be made equivalent.
In Figure 68.1, P is the DFT size.
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FIGURE 68.1. DFT Based Wideband Beamformer
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Part 9. 15/04/14 Lecture Note
69. DELAY AND SUM BEAMFORMER

Consider the k" channel.

(69.1) yp(t) = h(t) xz(t — ) +ex(t)  k=1,....M

Assume that

(69.2) he(t) = 5(t) Yk
Then,
(69.3) yr(t) = o(t — 71) + ex(t)
2\

FIGURE 69.1. Delay and Sum Beamformer

70. WIDEBAND PROCESSING

Signals in practical applications (such as acoustics and some RF signals) are
wideband in nature. Signal power varies over the frequency band and it is advan-
tageous to process such signals with wideband techniques.

There are two types of wideband processing methods:

e Coherent Methods Use focusing or mapping matrices in order to to trans-
form covariance matrices and obtain a single covariance matrix. Then
known techniques are applied over this covariance matrix. It is a com-
putationally efficient method.

(70.1) Ry = Ty Ry,
where in Equation (69.1) &k =1,...,128 for example.

(70.2) R=> Ry
k
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e Non-coherent Methods
Process each frequently separately and then combine the result. Compu-
tationally complex method. It performs as good as non-coherent methods
(If not better) with significantly less computation.

70.1. Non-coherent Processing, MUSIC Example.

K
1
(703) PO = 2 e o) O o Jalon 9
G(wy) is found from (70.4)
, 1Y
(70.4) Rlwr) = 5 > Y @k, p)Y ™ (wr.p)
p=1
{f\ Ui 5 S, ‘—

S\l\% FFT —ant :‘@ \ / G|HG|G|HQ| !
L ! [ ' Gl
| . | I |— =
1 ) Htﬂl\ %-R R EE— J
ﬁl FFT\- Yoo ¥ ‘._, o‘:‘Gthl.*Gy_

F1GURE 70.1. Non-coherent MUSIC Example

Ry R
\ [ \ ‘ Lod {0

* Nare
b ?‘=%=\T T |_>\ Prosins |2
\ I

__—E—)—P

F1GURE 70.2. Coherent Processing Example

70.2. Coherent Processing Example. In Figure 70.2, T} is called as focusing

(matrix) matrix. It is find by array interpolation. Generally wide processing gain
< K.

71. WIDEBAND MODEL

th

Assume identical sensors, m"" sensor signal can be written as

(71.1) Un() =D skt = Tmn) +om(t)  m=1,2,... .M
k=1
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where M is the number of sensors and n is the number of sources, sj(t) is k"
source signal, v, (t) is noise for m!” sensor, 7,,, is delay for the signal propagation
from the nt" source to the m*" sensor. Example case is shown in Figure 71.1.

AS %

2% e s
14 Z 21

Zn

*— 3 X
l

3

Ficure 71.1. Example Wideband Case

Take DFT of 71.1,

(71.2) Yo (w) = ZSk(w)e_j‘*’T’"" + Vin(w) m=12,...,M
k=1

In matrix-vector form

(71.3) Y(w) = Aw)S(w) + V(w)
where
s1(w)
(71.4) S(w) £ 82(:&})
Sn(w)
(71.5) A(w) e 2 e 9Tm

Let 71 be the time delay for the k' source to the reference sensor 1.

1
(71.6) Tmk — Tik = — [Tm 08k sinby + Y sindgsinby, + zmcosly]
c

Reference sensor 1 is positioned at (0,0, 0).

(71.7) Ry(w) £ E{S(w)S" (w)}

(718) Ru(w) 2 B{V(w)V" (w)}
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(71.9) R(w) 2 B{Y (w)YH (w)} = A(w)R,(w) A () + Ry (w)

To estimate
(71.10) R) = 5 DY ()Y (w, ) = Y (@)Y ()

72. VIRTUAL ARRAY PROCESSING

Usually the number of sensors is limited and sensors are preferred to be posi-
tioned in a large aperture. Therefore gaps between sensors occur. Furthermore
conversion from a certain array geometry to another may be required (Ex: UCA
to ULA). In virtual array processing, given the sensor signals of a real array sensor
signals of a virtual array are obtained. Example situation is shown in Figure 72.1.

O O O O —feel Arrey
OO O O O O-Vike Ary

F1GURE 72.1. Virtual Array Example with ULA

There are different methods for virtual array processing: Array interpolation,
manifold separation, HOS (Higher Order Statistics) are some examples.

73. ARRAY INTERPOLATION

73.1. Co-array. Co-array is a function which gives the number of times each spa-
tial correlation lag is contained in an array. Consider the non-redundant array
shown in Figure 73.1.

© o I 1 o 10
o {1 2 3% u 5 ¢

FIGURE 73.1. Non-redundant Array

Let h[n] denotes the sensor displacement, h(d;) = 1.

(73.1) h=[1 10 0 1 0 1]

Co-array is found as

(73.2) c[n] = h|n] * h[—n]



86 ALPER YAZAR

1
|
!

(73.3)

S
S,
Il
e e e e N R e e S Y

In (73.3) 4 is called as center point.
Also,

Too To1 To2 To03 To4
(73.4) R
Tio Ti1 Ti2 Ti3 Ti4

For example,

(73.5) rs = E{y(1)y"(3)}
Lagis3—1=2.

(73.6) o2 = E{y(0)y™(2)}

Lagis2—-0=2.
For ULA

1
I
S

(73.7)

o,
S,
I
:waqxcnc:\]cncn»oowhn

Advantage of no redundancy is they are placed well but disadvantage is SNR is
low.

From a standpoint of efficient spatial sampling we would like the co-array equal
to one except at the origin. If we find such a array (called as perfect array). There
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are N, = M(M — 1)/2 number of different off-diagonal elements in a M x M
covariance matrix.

Perfect arrays do not exist for M > 4. After M = 4, holes are seen in the
co-array.
Perfect arrays are shown in Figure 73.2.

\ meH

o | ©O
v 4 5 &

FIGURE 73.2. Perfect Arrays

For larger arrays we consider two options

73.2. Non-redundant Arrays. We consider the array such that c[n] is either zero
or one except the origin.
Example-1 M =5 is shown in Figure

ool o | 1t 11 O o
01 234 5 C39 35 101

F1Gure 73.3. Non-redundant Array with M =5
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1
I
~

(73.8)

el
=)
I
O =3I+ I I UR R, R ROR R

73.3. Minimum Redundant Arrays. We choose the sensor positions to make
array aperture, N, as large as possible without having any gaps. One can write

M(M —1)

(73.9) N, = .

— Nr+ Ny

where Np is number of redundancies and Np is number of holes in (73.9).
For minimum redundant arrays, Ng = 0.
Example-2

Il o | 1 Ol O

o0 |
o1 23 4 5 €38 3

F1GURE 73.4. Minimum Redundant Array Example

For that case,



(73.10)

1
1
~

L2,
=,
I
ST B S T B I L e e

METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 89

73.4. Covariance Matrix Augmentation. Given the ULA in 5x 1, with M =5
elements we have all the covariance lags up to 11 except lag = 6 (What ?). In
covariance matrix augmentation, we would like to obtain My x My covariance matrix
(Mg > M) from M sensor data. We can do this by using fully augmentable NLA
(minimum redundant arrays like last Example-2) or by using partially augmentable
NLA (non-redundant arrays like last Example-1).
Consider Example-2. M = 5, the covariance matrix augmentation for 10 x 10
covariance matrix can be applied as follows.
Consider (73.10), using Toeplitz completion.

(73.11)

(73.12)

(73.13)

ao a3
*a1@2?@4a5a6

ap a2

*

r=o 6 v 00 ¥ 00y

ag =10 + 711 + 744 + 777 + 799

ar ag ag
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(7314) a; = To1
(7315) as = Tr9
(7316) ag = 14 + T47

74. ARRAY INTERPOLATION

X % XX K KX 7‘r—>C‘th1'm

: Ansles
* ."; I o .
e -
Ny ok
o 0O o) o) O Noa-red
Q ! L 3 e

FIGURE 74.1. Array Interpolation

There is a sector of interest where the source DOAs are assumed to exist. Vio-
lation of this assumption may result in significant losses.

Angular sector is diveded into angles composed of calibration sources. These
angles are (;31

where also
A ¢f - ¢b
(74.2) = 7A¢

and ¢ is final and ¢y is beginning angle.
Let signal of real array is:

(74.3) yr(t) = Ar(9)s(t) + e(t)
and for virtual array
(74.4) Yo(t) = Ay(@)s(t) + e(t)

Then Array Interpolation Marrix Thrps is obtained.

(74.5) TMXMA’I’MxP((g) = AUMXP((Z;)

where P (number of calibratin angles) is greater or equal than M. Then,

(74.6) T =A,AH (A, AT
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(74.6) is a classical array interpolation (AI) mapping. It has limited sector width,
biased and ill-conditioned matrix (for inversion) (7).

75. WIENER ARRAY INTERPOLATION

(75.1) y(t) = Aps(t) + e (t)
is given.
(75.2) J(t) = Ays(t)
is desired.
(75.3) E £ EB((T, - 9)(T, - 9"}
OF
(75.4) ITH = 0
then,
(75.5) T = A,RAY (AR AT + R,) ™

Notice that in (75.5), R, term provides robustness for matrix inversion.

This method as better mapping accuracy especially at low SNR. 11l conditioning
in matrix inversion is less likely. A larger sector width can be used. Bias effect is
also comparably low.

If R; = 02 and R, = o¢I then

(75.6) T = o2 A, AT (A02 AT 4 62) 7

Signal and noise variances can be estimated using SNR estimate.

One problem with array mapping (or Al) is 7T = I in general. Therefore
transform domain noise is not white. Noise flooring effect shown in Figure 61.3
occurs. So, whitening transformation should be used.

Steps for AI in DOA Estimation

First, obtain the covariance matrix estimate from the real array, R.

Second, compute the mapped covariance matrix using Al.

(75.7) R=TRTH"
Let,

(75.8) B=1TH
Define,

(75.9) R =B Y2R(B™1/?)H

(75.10) R =B Y2TARAHTH(B=V%HH 4 521
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Finally find the noise space eigenvectors matrix G (found from R) and compute
the MUSIC spectra; ||a” (¢) B~1/2G||2.

76. NOISE WHITENING

(76.1) y(t) = As(t) + v(t)

where v(t) is coloured noise.

(76.2) R, = ARA" + R,
Let
(76.3) g(t) 2 RyYV2y(t) = RyY2As(t) + Ry Y20(t)
(76.4) Ry = R;Y?ARA"R;YV? + R7YV2R,R;Y/?
Finally,
(76.5) Ry = R;VPARAPR;V2 4 T

then R, 1/2 is whitening transformation.
MUSIC when the model is modified.

(76.6) y(t) = CAs(t) + v(t)
1

where G is obtained from R, (noise space eigenvectors).
For noise whitening case,

1
at () Ry *GGH R, a(9)

(76.8) p(¢) =
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Array Mapping Methods:

AT (Array Interpolation)
WAI (Wiener AI)

RSS (Rotational Signal Subspace) No noise flooring especially for ULA

Manifold Seperation

77. RSS (ROTATIONAL SIGNAL SUBSPACE)

93

In AI, T is designed to map A, (Real Array Manifold) to A4, (Virtual Array
Manifold).
In RSS, T is a unitary matrix (THT = TTH = I) and therefore does not lead
to noise amplification. No noise flooring effect. (See Figure 61.3).

Consider
(77.1) y(t) = As(t) + v(t)
(77.2) Ty(t) = TAs(t) + Tou(t)
(77.3) T= arngin T A — Aoyoxc > st THT =T

The solution is

(77.4) Truxy = VSUH
T is called as Focusing Matrix.
where
(77.5) A AT =vyUu®  SVD
and
(77.6) S = [Tuxn 0"
(77.7) y(t) = Ar(9)s(t) + (1)
(77.8) Yo(t) = Ty(t) = TA(¢)s(t) + To(t)
(77.9) R,, = TA.RATH + TT 5?2

in (77.9), it is assumed that R, = 021, uncorrelated noise and signal.

(77.10)

(77.11)

T = veutusHvH

TTH = vy iy
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(77.12) 7" =VVH

(77.13) TTH =1

No noise amplification. But for circular arrays it has problems.

78. MANIFOLD SEPARATION

The idea in MS is to map the real array to a virtual array with a Vandermonde
steering vector.

There is no limitation on sector width.

This is being done with an approximate mapping as

(78.1) a(¢) ~Tyg(9)
where
C Pl
e—J 5 [
P-3
eﬂ 5 [
(78.2) 9(¢) = :
P-3
e] 5 ¢
P-1
¢J 2

where g(¢) is P x 1, T'is M x P and a(¢) is M x 1 matrix.
Elements of T are:

2 .
(78.3) T = VI (1 ) 7

where (7,,, $n) are polar coordinates of the m*" sensor. .J,, is the Bessel function
of the first kind, order n.

T is depending only ti (real) sensor positions.

g(¢) is a Fourier basis and P determines the approximation accuracy. As P — oo,
(78.1) becomes exact.

This technique does not require a sector of interest.

A suggested value for P:

(78.4) pP= ?
(78.5) y(t) = a(6)s(t) + v(t)

(78.6) y(t) = Ta(d)s(t) + v(t)
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1
g™ (Q)THGGHTyg(¢)

(78.7) p(¢) =

where (78.7) is MUSIC pseudo-spectra. G is regular noise space eigenvectors.

79. WIDEBAND PROCESSING (EXPLANATION OF THE COVARIANCE MATRIX

MAPPING)

79.1. Coherent WBP. First,you may review (71.1) and succeeding equations.

(79.1) Y(wk) = A(wr)S(wk) + E(wr)
where
Y () T
L | Ya(ws)
(79.2) Y (wg) = :
YM(wk)
[ S1(we) ]
Sg(wk)
(79.3) S(wg) = :
S (wr)
(79.4) Alwg)ji e 9T j=1,2,.... M i=1,2,...
(79.5) Ry, £ B{Y (wp) Y (wi)}

Using sample covariance matrix:

N,
N 1 2
(79.6) R 2 <> Y (@, p)Y " (wk.p)

5 p—1

Consider the steering vector at wy, for ULA

1

ejdwk/ccosqb

(79.7) ak(¢) =

ej(M—l)('iwk/ccosqﬁ

We would like to have

(79.8) dwy, = constant = dywo

95

where d is element spacing at operating frequency and w is operating frequency.
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Using classical array interpolation for simplicity
~1

(79.10) Ty = A(wo) A" (wi) [A(wr) A (wr)]

You can use other previously learned techniques to generate T as well.

K
(79.11) R=) TiR.T}!
k=1
(79.11) is the final covariance matrix carry all the information in different fre-
quency bands. This is called as focusing operation.
DOA estimation methods can be applied on R for coherent wideband processing.

79.2. Non-coherent WBP.

K
(79.12) s(@) 2> a" (wr, 9)GrGY 0™ (wi, 9)
k=1

G\, is obtained from Ry.

1
5(¢)

(7913) DPincoherent ((b) =

(79.13) is MUSIC pseudo-spectra.

Notice that for each frequency bin, SVD operation should be done and it has
computational load.

Coherent methods works closely well as non-coherent methods with significant
computational advantage.

10:40

80. SOURCE LOCALIZATION

The problem with passive source localization is to determine the location of an
emitting target. This is also called as position fixing (PF).
The physical quantities if localization are:

e Time of Arrival (TOA)
Time that the signal from the transmitter reaches to receiver. It requires
synchronisation.
e Time Difference of Arrival (TDOA)
Difference of the arrival times between the sensors is used. No need to
sync to transmitter but sensors should be synced.
e Phase
Direction of arrival estimates ate each sensor (array) are used (DF).
e Amplitude, RSS (Received Signal Strength)
Used especially for wireless sensors in close proximity.
e Frequency Difference of Arrival (FDOA)
e Doppler Frequency
Two types of localization problems: Navigation and Localization. They
have some common points.
In navigation transmitter positions are known and the receiver has to be
located.
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DF Thoa -~
A )/;( Poro ldo
"\ C N
If \ ‘
y Y ‘ Y
&mq-1 /! \\ ‘ | 5‘2
s A S [ang‘c]
. ' Senuor 2 fflﬁjll\

DF '
e DFSide 2

F1GURE 80.1. Sensor Array and Single Sensor Case

In localization, receivers have known positions and the transmitter has
to be located.

TOA TDOA
Navigation (Tx > 1, Rz = 1) GPS LORAN, DECCA, mobile positioning
Localization (Rx > 1, Tx = 1) | Active Radar, Sonar Passive Radar, Sonar, Seismic

Some common techniques for localization:
DOA ant triangulation
TDOA (Requires wideband signal) (7)
TOA
Hybrid techniques: DOA with TDOA, etc ...
Localization accuracy depends on
e TDOA and DOA accuracy
e Sensor positions with respect to target
e The method used for estimation

81. TRIANGULATION

Two or more LOB (line of bearings) assumed to be measured on the target at
the same time can be intersected for position finding (PF). This technique is called
as triangulation.

(81.1) singy = %
(81.2) di = dsing,

. dq
(81.3) sin(pa — ¢1) = .
(814)  sin(¢2 — ¢1)

Using (81.2) and (81.4)
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‘Exrsa+

(%t z\“fh

FicUrE 81.1. Triangulation

dsing,
81.5 r=——
(B1.5) sin(¢2 — ¢1)
(81.6) T = rcosps
(81.7) Y = rsings
It can be generalized to 3-D case.
1
YT Y Ermr
~
SIS £lljpe
- r § - o
S T
, - - ‘ - - ﬂ
- - * l - h
- [] -— 4

FIGURE 81.2. Error Ellipsoid

11:40
There are three deterministic methods for location given the triangle of LOBs.

a) Intersection of medians
e b) Intersection of angle bisectors



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 99

e ¢) Steiner point (defined as the point where angles between lines from the
corners are 120 degree)

FIGURE 81.3. 3 Deterministic Methods

82. LEAST-SQUARES LOCATION ESTIMATION

F1GURE 82.1. Least-Squares Location Estimation

Let define a position vector, 7:

(82.1) r= [“’}

yr

where r; is position of the i** DF sensor, d; is distance from i* DF sensor to
target wu; is unit direction vector where

A |COSO;
(82.3) w2 [simﬁi]
(82.4) = O] = | %] g, |05
. yr Yi | sing;

(82.5) vy = x; + dicosp;
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(82.6) yr = ¥i +d;sing;

From previous equations,

(82.7) — X3 SINQ; + y;c08¢; = —xTSING; + Y1rCcosP;
—x18iNn¢1 + Yy1co08Py —singy  cospy
(82.8) : = ; : xT]
. : E : yr
—TNSing, + Yyncoson —SingN CoSPN

In matrix form,
(82.9) b(¢) = H(¢)x

(82.10) &= [HYH]™ H
Note H(¢) is overdetermined if N > 2. It is a good thing.
83. MAXIMUM LIKELIHOOD ALGORITHM

Assume that noise is Gaussian and zero-mean.

(83.1) % = arg min F(x, ¢, 0)

(832 P, 6) = gloe) — o175 [gla) ~ ]
&

(83.3) g = |
gn ()

(83.4) gi(z) = tan™" <§iﬁ>

(83.5) Az = 2g — 2

(83 Ay = e

where (z;,v;) is the i*" DF site position and (xr,y7) is target position.

o1
(83.7) oo |

oy
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(83.8) S = diag(o?,03,...,0%)

where N is the number of DF sites and o7 is variance of azimuth estimates.
The solution can be found by using Gauss-Newton iterative method.

(83.9) Enipr =2+ 90 S ga) T gl ST o — 9@ )]
r—Ay; Amp T
,,,2 ,r,2
—AlyQ Aflﬂz
(83.10) g 2| 73 T3
—AyN AJL‘N
L % 3

gz is called as Jacobian Matriz.

(83.11) r? = a? 4 y?

To start search, result of LS solution may used as initial point.
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Part 11. 13/05/14 Lecture Note
84. SOURCES OF ERROR IN TRIANGULATION

e Noise
e Measurement Noise
e Geometric Dilution of Precision in Triangulation
If the target is farther away from the sensor baseline, the error in position
fixing increases.

- "
— - - " _-.__
. - . -
-~ - — - -
- - -
- - ~ . - - = -
- ~ - -
~ - — =
- - - — -~
- -

Larger Distance Larger Area

FIGURE 84.1. Geometric Dilution of Precision in Triangulation

e Line of Bearing Error
e Effect of Navigation Error
The errors in sensor position affects the PF accuracy. Usually the error
is due to GPS measurements.

A1

. s gwd
DF Station #2 DF Station #1 T
"r e e s ® © 0o
— .
{ .Y mae C:F{ECM
d Ecror Sovee

\_! Errer Sﬂdrﬂf_

FIGURE 84.2. Placement Errors

85. SINGLE-SITE LOCATION ESTIMATION (SSL)

RF case, HF frequency (3 - 30 MHz)

HF signals are long-range signals that are reflected (refracted) in the ionosphere
back to earth.

Measuring DOA (azimuth and elevation) and the height of the point of the
reflection allows us to calculate the position of the emitter.

Tonosphere height may no be needed when there are two ore more ray paths
arriving at the sensor side.

10:40

Tonospheric sounders are used to measure the height of ionosphere. The time of
flight of pulse is used to find the height of ionosphere.
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Ficure 85.2. SSL Assumption

-

N

%&L

nL ' @

FIGURE 85.3. Passive SSL

103

85.1. Passive SSL. When the signals arrive from two directions, there is no need

to know height.

0y — 01
cos———

cT D)

.]. = =
(85.1) R tanfy — tanb, . 02+ 6,
sin———

2

where 7 is the time difference between two paths.



104 ALPER YAZAR

86. TDOA-FDOA LocATION ESTIMATION

Ry,
( Canyt z)
>N

et E"\Ag

((on* T

FIGURE 86.1. TDOA Scenario

(86.1) 8i(t) = el¥ie Iwdhity(t — 0;)

where 7; is time delay.
TDOA requires at least 4 sensors.
Narrow Band Received Signal

(86.2) §;(t) = ed¥ieTIwdity(t — 1)
where

(86.3) o = wer;

(86.4) wd; & “im

T; is the time delay.

To estimate time of differences radars (planes) should have perfect synchroniza-
tion.

Delay Estimation

Cross correlation of time signals

T
(86.5) Raps, (1) = /0 su(t)s5(t — 7)dt

find peak of |Rs,s,(7)].
Doppler Shift

T
(86.6) Ry, s, (w) = /0 s1(t)s5(t)e Iwtat
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find peak of |Rg, s, (w)|.
TDOA/FDOA
Ambiguity function

T
(86.7) Alw,7) = / su(t)s5(t — T)e=T@tdt
0
find peak of |A(w, 7).

87. QUADRATIC LOCALIZATION METHODS

TDOA is an example of quadratic methods. LOP (Lines of position) curves are
intersected to estimate the emitter location.
Advantages

e In triangulation an array is used for DOA measurement. At least two DF
site is required for PF (position finding).
In TDOA, a single antenna/sensor and at least 4 sensors are required
for 3-D PF.
e Usually higher precision and accuracy can be obtained in TDOA (especially
for radar signals)

Disadvantages
e Accurate and synchronized clocks are needed for each sensor.
Simple Case Example

U

0 l [
0,0 %2,0
-"J‘l:o : ‘

< >
4

Ficure 87.1. Simple Example

c is speed of flight, t; is the time of flight between the target and sensor.

(871) r, = Cti
1
(872) T = tQ — tl = E(TQ - 7“1)

87.3 ri =/ (xp — x4)2 + 92 i=1,2
T



106 ALPER YAZAR

(87.4) Ar=ry—r = \/(:chxl)Hy%f \/(waxz)Qﬂ/%
(87.5) d=ux1+x2
$2 y2
87.6 ——=1
(87.6) a b

(87.6) is hyperbola.

Ar?
2 Ar?
(87.9) y = :I:Sx

(87.9) are the asymptotes which define DOA for far field sources.
Line of positions (LOP) are isochrones.

@‘ [gochrom.g

FIGURE 87.2. Line of Positions Isochrones

88. LocAaTioN EsTIMATION BY TDOA

(88.1) S—

t1 is the time of flight to the reference sensor.
(z7,yr, 27) is the target position.

(88.2) (ct1)? =d* = (z1 —27)> + (11 —yr)* + (21 — 27)°
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(88.3) (ct;)? = (d+cm)? = (i —xr)* + (ys —yr)* + (20 — 21)? i=1,2,3,4

Linearization

e Addition of a new variable
e Taylor series expension

11:40
88.1. Addition of New Variable.

(88.4) d* = (z1 —27)® + (y1 —y1)* + (21 — 27)°

(88.5) d? = xf + yf + z% — 2xyxp — 2y1y1r — 22127 + :v% + y% + z%

(88.6) d? 4 2dery + 272 = x5 + Y2 + 23 — 2oy — 2poyr — 22027 + T2 + Y& + 25
Let’s subtract (88.5) from (88.6)

(88.7)
—2dery—c?ry = (234yi427) — (v5+ys+23)+2(xo—21 ) e r+2(Y2—y1 )yr+2(20—21 ) 21

where x1, T2, Y1, Yo, 21, 22 is known in (88.7).
Similarly obtain (88.6) for other is and subtract (88.5) from them.
Then,

(88.8)
T1— T2 Y1 — Y2 21— 22 —CT2 TT 2422 42 422 — 22 — 2 — 52
5 T1—T3 Y1—Ys AT O3 |y _ 2 L ! e 2
: : : : T 2.2 2 2. .2 2 2 2
T1—IN Y1 —YN 21 —2ZN —CIN d CTN T HYr +21 — Ty —Yn — 2N
(88.9) Ax=b
Then,
(88.10) v = (A" A) AMy

3D coordinates can be found by using at least 5 sensors. (N > 5)

It is desired to have more sensors and an overdetermined set of equations to
improve the accuracy.

Sensors should be sufficiently further away from each other in order to have
different ;.
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F1cURE 88.1. Taylor Series Approach Assumption

88.2. Taylor Series Approach. The equation can be linearized by a Taylor series
expansion about an initial estimate of target location (zr,, Y7y, 21, )

!
T
(811)  flx) = flar,) + LT o
The first order term is kept ignoring the rest.
Assume that there are two sensors which move in time and measurements of a
fixed target are taken.

f”(xTo)

21 (Z‘T—J?TO)Q—F...

T—JCTO)+

(88.12) cAt; =d;1 — di2
(88.13) At =1t;1 —ti2
T T2
Aty = fi(xr,yr,zr) = || [t yr zr]” = [win vin zia] ||
T T
(88.14) —N[zr yr 2zr]” —[zi2 vz z2] |?

where i =1,2,...k

(88.15) P; £ cAt;

is measured.
Using Taylor series expansion with initial target position.

(8816) P — fi|$T0,yTO,ZT0 = %|$T=$TO Am-i—@b'r:y% AyT =+ @brp:z% Azp
(8817) A.TT =TT =TT,
(88.18) Ayr =yr = yr,

(8819) AZT = 2T = 2Ty
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(88.20)

(88.21)

(88.22)

(88.23)

0f Ofi Oh
_ ox dy 0z
nll | ok ok
2. 2 — a.’IJT 8yT aZT
B il N op on o
_833'1“ 8yT 8ZT_

Ar =P

&= (AMA)" AP

X To

r=2+ |yn,

Accuracy depends on:

ZTO

e Sensor geometry with respect to target

Timing accuracy of the receiver
Multipath

Inaccuracy in sensor positions
Frequency synchronization between transmitter and receiver

T — ng
Yr — Y1,
2T — RT,

89. ML SOURCE LOCALIZATION

Noise is zero-mean Gaussian.
The cost function for ML

(89.1)

(89.2)

Fr(p) = 5~ h(p)"C; (= h(p)

where C is the covariance matrix of range differences.

h=c

T2
T3

™

where 7; = t; — t1 is the time difference with respect to first sensor.

(89.3)

(89.4)

ha

()

hi(p) = llpi — prl| — [lp1 — prl|
where pr is target and p; is sensor position.

109



110 ALPER YAZAR

Assume that TDOA measurements are independent from each other.

S )
1 - ==
2 2
L
(89.5) R, =c*07poa |2
R
=
) 2 i

If a reference sensor is used where each TDOA is computed with respect to this
sensor, there is a correlation between measurements and covariance matrix becomes
as this.

Then MLE algorithm is:

e Estimate the TDOA for sensor pairs.
e Obtain h and (on
e Perform a grid search at each point
— Calculate the range difference between the first sensor and others with
respect to the target, h;(p)
— Calculate the cost function, F,(p).
e Find the target position which minimizes the cost function.
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Part 12. 20/05/14 Lecture Note

90. RECEIVED SIGNAL STRENGTH (RSS) LOCATION

by, X dt
’ //T’- }ai’.,rel’em

. o P2

Ficure 90.1. RSS Example

We will consider differential RSS method which is suitable for passive incorpo-
rating localization. Otherwise transmitter power should be known.
Advantages
Simplicity
Size
Power
Complexity
Cost
Disadvantages

e Noisy range estimates
e Multipath
e Attenuation due to environmental factors.

90.1. Signal Model.
(90.1) Py = Pr — 10vlog1ody + nq

where P; received signal power in dB and Pr is transmitter power in dB. 7 is
path loss factor (2 < v < 6). d; is distance between sensor and transmitter. n; is
the noise (shadow fading)

(90.3) di = /(w1 — 2:)2 + (yr — v:)?
In order to eliminate Pr, subtract (90.1) from (90.2).

1

where
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In order to linearize (90.3), d? is required.

a2
(90.6) e 2P = () e/ rma
di
di\?
(90.7) E{e~?/7Pa} = <d> TR j—o N
1
(v or 42 at exponent?)
(90.8) A7 £0.01[In(10)]%0?
(90.9) o? & Var{n;}
2
Unbiased estimate of d—;
1
2 2
d2 ——Piu——5 (AF+AD)
(90.10) d—; =rp=e 7 Y
i
Ignoring noise
(90.11) radi =d? i=2,...,N
From (90.3)
(90.12) d? = 22 + y2 — 2xxp — 2yiyr + 27 + P i=2,...,N
(90.13) R & 2% + yF
(9014) Tild% =T [(IT — $1)2 + (yT — y1)2]
(90.15) rind? =iy [R — 2z — 201y + @7 + ¥
From (90.12) and (90.15),
For ¢ =2,

(90.16) R(ra1 — 1) + (22 + 21791 )27 + (242 — 2y1721 )yr = @5 + Y5 — ra1 (2] +y7)
Let,

2x9 — 219111 2Y2 — 2ro1y1 To1 — 1
(90.17) AL :

2en — 2ryi1z1 2yn —2rniyn v — 1
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xTT
(90.18) 0= |yr
R

a3 +y3 — ra1 (a7 + y7)
(90.19) b= :

% +yk —rai(@? 4 97)

(90.20) A9 =0

LS solution is:

A rr
(90.21) 0= |yr| = (A7 A)~LAHp
R
Define error vector,
Wa
A W3
(90.22) we |
W
90.23 wy =diry =d> i=2,...,N
1 7
(90.24) E{w} =0
(90.25) Cp = XASH
(90.26) ¥ =diag(ra1,...,"N1)
i(kﬁ%\?) ikf iA?
eV’ —1 7 -1 e’ -1
(90.27) A=
2 4 2 2
M —5 (AR +AD)
e” -1 . .oooe” -1

90.2. BLUE (Best Linear Unbiased Example) Solution.
(90.28) 0=(A"TC; AT AT O
10:40
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91. CALIBRATION
Calibration corresponds to correction due to unknowns or uncertainties of the
system parameters.
In practical systems, it is not possible to operate the system without appropriate
calibration.

91.1. Bench Test and Calibration. It is shown in Figure 90.1.

1
i

pe r\\BUmncnr\\lrfw

DD g ES—FI-{\Q*O‘—

__‘r\C.."-f‘Pp-P

FiGUrE 91.1. Built-in Calibration Example

91.2. Anechoic Chamber Test and Calibration. It is an special shielded room
with RF absorbers on the walls as well as ground and ceiling. Turn table is used
to rotate DF system. A calibrated antenna and transmitter is used as source to

test the system for different frequency (*), azimuth (**), elevation (*), modulation,
polarization. (*: Importance)

91.3. Calibrated Site Test and Calibration. A calibrated open field test facility

bridges the the gap between production and operational use. Test area should have
15X to 10X dimensions at the lowest frequency.

F1GURE 91.2. Open Field Calibration



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 115

For each frequency, azimuth. elevation, test equipment is rotated around a circle
and an emitter is used to collect the calibration data. Calibration data can be
interpolated to obtain better angular coverage.

91.4. Installed Test and Calibration. DF system is installed on its platform
and tested in open test field.

91.5. Operational Test and Calibration. If your system is fixed at specific field,
this is an important method.

Nothing to say about !

11:40

92. How TO CALIBRATE?

Consider M sensor outputs, baseband signals (RF situation).

(92.1) y(t) = alér)s(t) +v(t) = A(@)s(t) +v(t) t=1,....N
k=1
(92.1) shows ideal case. Practical case shown in (88.13).

(92.2) y(t) = CGA(¢)s(t) +v(t) t=1,....N

where C' is mutual coupling matrix and G is gain-phase mismatch matrix.
Error sources:
e Mutual coupling
Uncertainty for antenna positions and orientations
Gain-phase imbalance of receivers.
1Q imbalances of receivers
Near-field scattering due to platform or terrain
Non-linear components
Quantization in phase shifters, A/D converters

Sn.N
Tanon DY o
10 Sn a4

F1GURE 92.1. Mutual Coupling

(92~3) Vn_ = n,n+1V7;r—1 + Sn,nvrj_ + Sn,nJerntrl

(92.3) gives reflected wave at antenna n.
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(92.4) V=85Vt

S is scattering matrix and S;; are scattering parameters.
For 2 antenna case:

Vi S S| [vit
92.5 L= !
29 Rl
In (92.5), S1;1 is input port reflection coefficient, S1o is reverse voltage gain, Sa;
is forward voltage gain, Soo is output port reflection coefficient.

W
7

where V. is reflected wave and V; is forward wave. When I' = £1 corresponds
to maximum reflection and I' = 0 corresponds to perfect match, no reflection.

(92.6) r

1 +’y ‘/’rna:l;

2. =1 =T 51
(92.7) VSWR = — R T
(92.8) Z=(I-9)"1I+29)
(92.9) c=2z"1

where Z is mutual impedance matrix and C is mutual coupling matrix.
92.1. Auto-Calibration (Online Calibration) (Self Calibration).
(92.10) y(t) = CGA(¢)s(t) + v(t)

C has a structure for uniform arrays like circular, linear arrays, etc.

Co C1 C3 0
Ci1 Cp C1 C2
Cy €1 Cy C1
0 Cy C1 Co

(92.11) C =

(92.11) is called as Bended Toeplitz Matriz, it is for linear arrays.

(92.12) G = diag(g1,92, - - -, 9m)

For structured C' matrix

(9213) 5,1 == C(Il
Co
(9214) a; = Talc = jja1 C1
C2

(92.15) P= ("1, GGHT,,C)7!
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(92.16) C = arg max P
C

where G is obtained from R, as in MUSIC algorithm.
In realistic scenarios self calibration doesn’t have very much chance.

92.2. Offline Calibration. Calibration data is collected in a controlled manner.

(92.17) Ze(t) = aese(t) + ve(t) t=1,...,N. ¢=1,...,C

where N, is number of snapshots and C' is number of emitter positions and a,
is true array steering vector in (92.17).

92.2.1. Coherent Calibration. In this case, s.(t) is known and true array steering
vector estimated as

(92.18) G ~
> lse(®)?
(92.19) a.=Ta
where T is calibration matrix and a is nominal and a. is true steering vector in
(92.18).

This result perfects calibration vectors as N, — oo.
There is a synchronization between transmitter and receiver in this structure.

92.2.2. Non-Coherent Calibration. When s.(t) is not known @, is estimated from
the principle eigenvector of the sample covariance.

1 X M
(92.20) R, = . vz (t) =D drerey
t=1 k=1

(92.21) be =

How to apply MUSIC?
(92.22) Ze(t) = ac(@)se(t) + ve(t)
(92.23) T zo(t) = a(d)se(t) + ec(t)

then use MUSIC.

A better approach is:

R. — G,

1

(92.24) p(e) =

afTHG.GHTa
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Part 13. Code Appendix

. MATLAB Code Figure 9.2

%Alper Yazar
close all;
clear all;

M = 100;
cos_phi = linspace(—1,1,100);

lambda = 2;

d =0.1;

num = sin(M/2 x d * 2 % pi /lambda * cos_phi);
denum = sin(1/2 x d * 2 %= pi /lambda * cos_phi);
fn =1 / M % num ./ denum;

plot (cos_phi, fn, ’linewidth’, 2)
grid on;

xlabel(’$cos \phi$’,’interpreter’,’latex’,’Fontsize’ ,15)
ylabel (’$B_{AF} (\phi)$’,’interpreter’,’latex’,’Fontsize’,15)

annotation (’doublearrow’,[0.4875 0.548125],...
[0.758767454350159 0.758767454350159]) ;

annotation (’textbox’ ,...
[0.560 0.728767454350159 0.058125 0.0510204081632653],  Interpreter

) )

,latex L.

>String’ ,{ ’$Bw_{HP}$" ' } ,...
’FontSize’ ,15,...
’FontName’, ’Agency FB’ ...
’LineStyle’, 'none’);

annotation (’doublearrow’,[0.440625 0.594375],...
[0.284714285714286 0.285714285714286]) ;
annotation (’textbox’ ,...
[0.452875 0.295918367346939 0.038375 0.0484693877551015], String’
{78Bw_{NN}$’} ,...
’FontSize’ ,15,...
’FontName’, ’Agency FB’ ...
’LineStyle’, ’none’

)

"Interpreter’,’latex’);

title ([ "$B_{AF} (\phi)$ for ULA where $M3$=’ num2str(M, %g’) ’ $\
lambda$=" num?2str(lambda, %g’) ' $d$=’ num2str(d, %g’)],’

’ ’,’Fontsize ’ ,12)

interpreter ’,’latex
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MATLAB Code Figure 10.1

%Alper Yazar
close all;
clear all;

M= 100;

theta = linspace(0,2xpi,led);

cos_phi = cos(theta);

lambda = 2;

d = 0.1;

num = sin(M/2 x d * 2 % pi /lambda * cos_phi);
denum = sin(1/2 * d * 2 % pi /lambda * cos_phi);
fn =1 /M x num ./ denum;

%fn = 20xlogl10(abs(fn));

polar (theta, fn)
grid on;
xlabel (’$\phi$’, interpreter’,’latex

)

) )

interpreter

,latex’,’Fontsize’,12)

,’Fontsize’
ylabel (’$B_{AF} (\phi)$’,’interpreter’,’latex’,’Fontsize’,15)
title ([ ’$B_{AF} (\phi)$ for ULA where $M$=’ num2str(M, '%g’)

lambda$=’ num?2str(lambda, %g’) ' $d$=’ num2str(d, %g’)],"’

119
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